/* RCSwitch - Arduino libary for remote control outlet switches Copyright (c) 2011 Suat Özgür. All right reserved. Contributors: - Andre Koehler / info(at)tomate-online(dot)de - Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com - Skineffect / http://forum.ardumote.com/viewtopic.php?f=2&t=46 - Dominik Fischer / dom_fischer(at)web(dot)de - Frank Oltmanns / .(at)gmail(dot)com - Andreas Steinel / A.(at)gmail(dot)com - Max Horn / max(at)quendi(dot)de - Robert ter Vehn / .(at)gmail(dot)com - Johann Richard / .(at)gmail(dot)com - Vlad Gheorghe / .(at)gmail(dot)com https://github.com/vgheo Project home: https://github.com/sui77/rc-switch/ This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "RCSwitch.h" #ifdef RaspberryPi // PROGMEM and _P functions are for AVR based microprocessors, // so we must normalize these for the ARM processor: #define PROGMEM #define memcpy_P(dest, src, num) memcpy((dest), (src), (num)) #endif #ifdef ESP8266 // interrupt handler and related code must be in RAM on ESP8266, // according to issue #46. #define RECEIVE_ATTR ICACHE_RAM_ATTR #else #define RECEIVE_ATTR #endif /* Format for protocol definitions: * {pulselength, Sync bit, "0" bit, "1" bit} * * pulselength: pulse length in microseconds, e.g. 350 * Sync bit: {1, 31} means 1 high pulse and 31 low pulses * (perceived as a 31*pulselength long pulse, total length of sync bit is * 32*pulselength microseconds), i.e: * _ * | |_______________________________ (don't count the vertical bars) * "0" bit: waveform for a data bit of value "0", {1, 3} means 1 high pulse * and 3 low pulses, total length (1+3)*pulselength, i.e: * _ * | |___ * "1" bit: waveform for a data bit of value "1", e.g. {3,1}: * ___ * | |_ * * These are combined to form Tri-State bits when sending or receiving codes. */ #ifdef ESP8266 static const RCSwitch::Protocol proto[] = { #else static const RCSwitch::Protocol PROGMEM proto[] = { #endif { 350, { 1, 31 }, { 1, 3 }, { 3, 1 }, false }, // protocol 1 { 650, { 1, 10 }, { 1, 2 }, { 2, 1 }, false }, // protocol 2 { 100, { 30, 71 }, { 4, 11 }, { 9, 6 }, false }, // protocol 3 { 380, { 1, 6 }, { 1, 3 }, { 3, 1 }, false }, // protocol 4 { 500, { 6, 14 }, { 1, 2 }, { 2, 1 }, false }, // protocol 5 { 450, { 23, 1 }, { 1, 2 }, { 2, 1 }, true } // protocol 6 (HT6P20B) }; enum { numProto = sizeof(proto) / sizeof(proto[0]) }; #if not defined( RCSwitchDisableReceiving ) volatile unsigned long RCSwitch::nReceivedValue = 0; volatile unsigned int RCSwitch::nReceivedBitlength = 0; volatile unsigned int RCSwitch::nReceivedDelay = 0; volatile unsigned int RCSwitch::nReceivedProtocol = 0; int RCSwitch::nReceiveTolerance = 60; const unsigned int RCSwitch::nSeparationLimit = 4300; // separationLimit: minimum microseconds between received codes, closer codes are ignored. // according to discussion on issue #14 it might be more suitable to set the separation // limit to the same time as the 'low' part of the sync signal for the current protocol. unsigned int RCSwitch::timings[RCSWITCH_MAX_CHANGES]; #endif RCSwitch::RCSwitch() { this->nTransmitterPin = -1; this->setRepeatTransmit(10); this->setProtocol(1); #if not defined( RCSwitchDisableReceiving ) this->nReceiverInterrupt = -1; this->setReceiveTolerance(60); RCSwitch::nReceivedValue = 0; #endif } /** * Sets the protocol to send. */ void RCSwitch::setProtocol(Protocol protocol) { this->protocol = protocol; } /** * Sets the protocol to send, from a list of predefined protocols */ void RCSwitch::setProtocol(int nProtocol) { if (nProtocol < 1 || nProtocol > numProto) { nProtocol = 1; // TODO: trigger an error, e.g. "bad protocol" ??? } #ifdef ESP8266 this->protocol = proto[nProtocol-1]; #else memcpy_P(&this->protocol, &proto[nProtocol-1], sizeof(Protocol)); #endif } /** * Sets the protocol to send with pulse length in microseconds. */ void RCSwitch::setProtocol(int nProtocol, int nPulseLength) { setProtocol(nProtocol); this->setPulseLength(nPulseLength); } /** * Sets pulse length in microseconds */ void RCSwitch::setPulseLength(int nPulseLength) { this->protocol.pulseLength = nPulseLength; } /** * Sets Repeat Transmits */ void RCSwitch::setRepeatTransmit(int nRepeatTransmit) { this->nRepeatTransmit = nRepeatTransmit; } /** * Set Receiving Tolerance */ #if not defined( RCSwitchDisableReceiving ) void RCSwitch::setReceiveTolerance(int nPercent) { RCSwitch::nReceiveTolerance = nPercent; } #endif /** * Enable transmissions * * @param nTransmitterPin Arduino Pin to which the sender is connected to */ void RCSwitch::enableTransmit(int nTransmitterPin) { this->nTransmitterPin = nTransmitterPin; pinMode(this->nTransmitterPin, OUTPUT); } /** * Disable transmissions */ void RCSwitch::disableTransmit() { this->nTransmitterPin = -1; } /** * Switch a remote switch on (Type D REV) * * @param sGroup Code of the switch group (A,B,C,D) * @param nDevice Number of the switch itself (1..3) */ void RCSwitch::switchOn(char sGroup, int nDevice) { this->sendTriState( this->getCodeWordD(sGroup, nDevice, true) ); } /** * Switch a remote switch off (Type D REV) * * @param sGroup Code of the switch group (A,B,C,D) * @param nDevice Number of the switch itself (1..3) */ void RCSwitch::switchOff(char sGroup, int nDevice) { this->sendTriState( this->getCodeWordD(sGroup, nDevice, false) ); } /** * Switch a remote switch on (Type C Intertechno) * * @param sFamily Familycode (a..f) * @param nGroup Number of group (1..4) * @param nDevice Number of device (1..4) */ void RCSwitch::switchOn(char sFamily, int nGroup, int nDevice) { this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, true) ); } /** * Switch a remote switch off (Type C Intertechno) * * @param sFamily Familycode (a..f) * @param nGroup Number of group (1..4) * @param nDevice Number of device (1..4) */ void RCSwitch::switchOff(char sFamily, int nGroup, int nDevice) { this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, false) ); } /** * Switch a remote switch on (Type B with two rotary/sliding switches) * * @param nAddressCode Number of the switch group (1..4) * @param nChannelCode Number of the switch itself (1..4) */ void RCSwitch::switchOn(int nAddressCode, int nChannelCode) { this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, true) ); } /** * Switch a remote switch off (Type B with two rotary/sliding switches) * * @param nAddressCode Number of the switch group (1..4) * @param nChannelCode Number of the switch itself (1..4) */ void RCSwitch::switchOff(int nAddressCode, int nChannelCode) { this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, false) ); } /** * Deprecated, use switchOn(const char* sGroup, const char* sDevice) instead! * Switch a remote switch on (Type A with 10 pole DIP switches) * * @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111") * @param nChannelCode Number of the switch itself (1..5) */ void RCSwitch::switchOn(const char* sGroup, int nChannel) { const char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" }; this->switchOn(sGroup, code[nChannel]); } /** * Deprecated, use switchOff(const char* sGroup, const char* sDevice) instead! * Switch a remote switch off (Type A with 10 pole DIP switches) * * @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111") * @param nChannelCode Number of the switch itself (1..5) */ void RCSwitch::switchOff(const char* sGroup, int nChannel) { const char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" }; this->switchOff(sGroup, code[nChannel]); } /** * Switch a remote switch on (Type A with 10 pole DIP switches) * * @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111") * @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111") */ void RCSwitch::switchOn(const char* sGroup, const char* sDevice) { this->sendTriState( this->getCodeWordA(sGroup, sDevice, true) ); } /** * Switch a remote switch off (Type A with 10 pole DIP switches) * * @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111") * @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111") */ void RCSwitch::switchOff(const char* sGroup, const char* sDevice) { this->sendTriState( this->getCodeWordA(sGroup, sDevice, false) ); } /** * Returns a char[13], representing the code word to be send. * */ char* RCSwitch::getCodeWordA(const char* sGroup, const char* sDevice, bool bStatus) { static char sReturn[13]; int nReturnPos = 0; for (int i = 0; i < 5; i++) { sReturn[nReturnPos++] = (sGroup[i] == '0') ? 'F' : '0'; } for (int i = 0; i < 5; i++) { sReturn[nReturnPos++] = (sDevice[i] == '0') ? 'F' : '0'; } sReturn[nReturnPos++] = bStatus ? '0' : 'F'; sReturn[nReturnPos++] = bStatus ? 'F' : '0'; sReturn[nReturnPos] = '\0'; return sReturn; } /** * Encoding for type B switches with two rotary/sliding switches. * * The code word is a tristate word and with following bit pattern: * * +-----------------------------+-----------------------------+----------+------------+ * | 4 bits address | 4 bits address | 3 bits | 1 bit | * | switch group | switch number | not used | on / off | * | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | FFF | on=F off=0 | * +-----------------------------+-----------------------------+----------+------------+ * * @param nAddressCode Number of the switch group (1..4) * @param nChannelCode Number of the switch itself (1..4) * @param bStatus Whether to switch on (true) or off (false) * * @return char[13], representing a tristate code word of length 12 */ char* RCSwitch::getCodeWordB(int nAddressCode, int nChannelCode, bool bStatus) { static char sReturn[13]; int nReturnPos = 0; if (nAddressCode < 1 || nAddressCode > 4 || nChannelCode < 1 || nChannelCode > 4) { return 0; } for (int i = 1; i <= 4; i++) { sReturn[nReturnPos++] = (nAddressCode == i) ? '0' : 'F'; } for (int i = 1; i <= 4; i++) { sReturn[nReturnPos++] = (nChannelCode == i) ? '0' : 'F'; } sReturn[nReturnPos++] = 'F'; sReturn[nReturnPos++] = 'F'; sReturn[nReturnPos++] = 'F'; sReturn[nReturnPos++] = bStatus ? 'F' : '0'; sReturn[nReturnPos] = '\0'; return sReturn; } /** * Like getCodeWord (Type C = Intertechno) */ char* RCSwitch::getCodeWordC(char sFamily, int nGroup, int nDevice, bool bStatus) { static char sReturn[13]; int nReturnPos = 0; int nFamily = (int)sFamily - 'a'; if ( nFamily < 0 || nFamily > 15 || nGroup < 1 || nGroup > 4 || nDevice < 1 || nDevice > 4) { return 0; } // encode the family into four bits sReturn[nReturnPos++] = (nFamily & 1) ? 'F' : '0'; sReturn[nReturnPos++] = (nFamily & 2) ? 'F' : '0'; sReturn[nReturnPos++] = (nFamily & 4) ? 'F' : '0'; sReturn[nReturnPos++] = (nFamily & 8) ? 'F' : '0'; // encode the device and group sReturn[nReturnPos++] = ((nDevice-1) & 1) ? 'F' : '0'; sReturn[nReturnPos++] = ((nDevice-1) & 2) ? 'F' : '0'; sReturn[nReturnPos++] = ((nGroup-1) & 1) ? 'F' : '0'; sReturn[nReturnPos++] = ((nGroup-1) & 2) ? 'F' : '0'; // encode the status code sReturn[nReturnPos++] = '0'; sReturn[nReturnPos++] = 'F'; sReturn[nReturnPos++] = 'F'; sReturn[nReturnPos++] = bStatus ? 'F' : '0'; sReturn[nReturnPos] = '\0'; return sReturn; } /** * Encoding for the REV Switch Type * * The code word is a tristate word and with following bit pattern: * * +-----------------------------+-------------------+----------+--------------+ * | 4 bits address | 3 bits address | 3 bits | 2 bits | * | switch group | device number | not used | on / off | * | A=1FFF B=F1FF C=FF1F D=FFF1 | 1=0FF 2=F0F 3=FF0 | 000 | on=10 off=01 | * +-----------------------------+-------------------+----------+--------------+ * * Source: http://www.the-intruder.net/funksteckdosen-von-rev-uber-arduino-ansteuern/ * * @param sGroup Name of the switch group (A..D, resp. a..d) * @param nDevice Number of the switch itself (1..3) * @param bStatus Whether to switch on (true) or off (false) * * @return char[13], representing a tristate code word of length 12 */ char* RCSwitch::getCodeWordD(char sGroup, int nDevice, bool bStatus) { static char sReturn[13]; int nReturnPos = 0; // sGroup must be one of the letters in "abcdABCD" int nGroup = (sGroup >= 'a') ? (int)sGroup - 'a' : (int)sGroup - 'A'; if ( nGroup < 0 || nGroup > 3 || nDevice < 1 || nDevice > 3) { return 0; } for (int i = 0; i < 4; i++) { sReturn[nReturnPos++] = (nGroup == i) ? '1' : 'F'; } for (int i = 1; i <= 3; i++) { sReturn[nReturnPos++] = (nDevice == i) ? '1' : 'F'; } sReturn[nReturnPos++] = '0'; sReturn[nReturnPos++] = '0'; sReturn[nReturnPos++] = '0'; sReturn[nReturnPos++] = bStatus ? '1' : '0'; sReturn[nReturnPos++] = bStatus ? '0' : '1'; sReturn[nReturnPos] = '\0'; return sReturn; } /** * @param sCodeWord a tristate code word consisting of the letter 0, 1, F */ void RCSwitch::sendTriState(const char* sCodeWord) { // turn the tristate code word into the corresponding bit pattern, then send it unsigned long code = 0; unsigned int length = 0; for (const char* p = sCodeWord; *p; p++) { code <<= 2L; switch (*p) { case '0': // bit pattern 00 break; case 'F': // bit pattern 01 code |= 1L; break; case '1': // bit pattern 11 code |= 3L; break; } length += 2; } this->send(code, length); } /** * @param sCodeWord a binary code word consisting of the letter 0, 1 */ void RCSwitch::send(const char* sCodeWord) { // turn the tristate code word into the corresponding bit pattern, then send it unsigned long code = 0; unsigned int length = 0; for (const char* p = sCodeWord; *p; p++) { code <<= 1L; if (*p != '0') code |= 1L; length++; } this->send(code, length); } /** * Transmit the first 'length' bits of the integer 'code'. The * bits are sent from MSB to LSB, i.e., first the bit at position length-1, * then the bit at position length-2, and so on, till finally the bit at position 0. */ void RCSwitch::send(unsigned long code, unsigned int length) { if (this->nTransmitterPin == -1) return; #if not defined( RCSwitchDisableReceiving ) // make sure the receiver is disabled while we transmit int nReceiverInterrupt_backup = nReceiverInterrupt; if (nReceiverInterrupt_backup != -1) { this->disableReceive(); } #endif for (int nRepeat = 0; nRepeat < nRepeatTransmit; nRepeat++) { for (int i = length-1; i >= 0; i--) { if (code & (1L << i)) this->transmit(protocol.one); else this->transmit(protocol.zero); } this->transmit(protocol.syncFactor); } #if not defined( RCSwitchDisableReceiving ) // enable receiver again if we just disabled it if (nReceiverInterrupt_backup != -1) { this->enableReceive(nReceiverInterrupt_backup); } #endif } /** * Transmit a single high-low pulse. */ void RCSwitch::transmit(HighLow pulses) { uint8_t firstLogicLevel = (this->protocol.invertedSignal) ? LOW : HIGH; uint8_t secondLogicLevel = (this->protocol.invertedSignal) ? HIGH : LOW; digitalWrite(this->nTransmitterPin, firstLogicLevel); delayMicroseconds( this->protocol.pulseLength * pulses.high); digitalWrite(this->nTransmitterPin, secondLogicLevel); delayMicroseconds( this->protocol.pulseLength * pulses.low); } #if not defined( RCSwitchDisableReceiving ) /** * Enable receiving data */ void RCSwitch::enableReceive(int interrupt) { this->nReceiverInterrupt = interrupt; this->enableReceive(); } void RCSwitch::enableReceive() { if (this->nReceiverInterrupt != -1) { RCSwitch::nReceivedValue = 0; RCSwitch::nReceivedBitlength = 0; #if defined(RaspberryPi) // Raspberry Pi wiringPiISR(this->nReceiverInterrupt, INT_EDGE_BOTH, &handleInterrupt); #else // Arduino attachInterrupt(this->nReceiverInterrupt, handleInterrupt, CHANGE); #endif } } /** * Disable receiving data */ void RCSwitch::disableReceive() { #if not defined(RaspberryPi) // Arduino detachInterrupt(this->nReceiverInterrupt); #endif // For Raspberry Pi (wiringPi) you can't unregister the ISR this->nReceiverInterrupt = -1; } bool RCSwitch::available() { return RCSwitch::nReceivedValue != 0; } void RCSwitch::resetAvailable() { RCSwitch::nReceivedValue = 0; } unsigned long RCSwitch::getReceivedValue() { return RCSwitch::nReceivedValue; } unsigned int RCSwitch::getReceivedBitlength() { return RCSwitch::nReceivedBitlength; } unsigned int RCSwitch::getReceivedDelay() { return RCSwitch::nReceivedDelay; } unsigned int RCSwitch::getReceivedProtocol() { return RCSwitch::nReceivedProtocol; } unsigned int* RCSwitch::getReceivedRawdata() { return RCSwitch::timings; } /* helper function for the receiveProtocol method */ static inline unsigned int diff(int A, int B) { return abs(A - B); } /** * */ bool RECEIVE_ATTR RCSwitch::receiveProtocol(const int p, unsigned int changeCount) { #ifdef ESP8266 const Protocol &pro = proto[p-1]; #else Protocol pro; memcpy_P(&pro, &proto[p-1], sizeof(Protocol)); #endif unsigned long code = 0; //Assuming the longer pulse length is the pulse captured in timings[0] const unsigned int syncLengthInPulses = ((pro.syncFactor.low) > (pro.syncFactor.high)) ? (pro.syncFactor.low) : (pro.syncFactor.high); const unsigned int delay = RCSwitch::timings[0] / syncLengthInPulses; const unsigned int delayTolerance = delay * RCSwitch::nReceiveTolerance / 100; /* For protocols that start low, the sync period looks like * _________ * _____________| |XXXXXXXXXXXX| * * |--1st dur--|-2nd dur-|-Start data-| * * The 3rd saved duration starts the data. * * For protocols that start high, the sync period looks like * * ______________ * | |____________|XXXXXXXXXXXXX| * * |-filtered out-|--1st dur--|--Start data--| * * The 2nd saved duration starts the data */ const unsigned int firstDataTiming = (pro.invertedSignal) ? (2) : (1); for (unsigned int i = firstDataTiming; i < changeCount - 1; i += 2) { code <<= 1; if (diff(RCSwitch::timings[i], delay * pro.zero.high) < delayTolerance && diff(RCSwitch::timings[i + 1], delay * pro.zero.low) < delayTolerance) { // zero } else if (diff(RCSwitch::timings[i], delay * pro.one.high) < delayTolerance && diff(RCSwitch::timings[i + 1], delay * pro.one.low) < delayTolerance) { // one code |= 1; } else { // Failed return false; } } if (changeCount > 7) { // ignore very short transmissions: no device sends them, so this must be noise RCSwitch::nReceivedValue = code; RCSwitch::nReceivedBitlength = (changeCount - 1) / 2; RCSwitch::nReceivedDelay = delay; RCSwitch::nReceivedProtocol = p; return true; } return false; } void RECEIVE_ATTR RCSwitch::handleInterrupt() { static unsigned int changeCount = 0; static unsigned long lastTime = 0; static unsigned int repeatCount = 0; const long time = micros(); const unsigned int duration = time - lastTime; if (duration > RCSwitch::nSeparationLimit) { // A long stretch without signal level change occurred. This could // be the gap between two transmission. if (diff(duration, RCSwitch::timings[0]) < 200) { // This long signal is close in length to the long signal which // started the previously recorded timings; this suggests that // it may indeed by a a gap between two transmissions (we assume // here that a sender will send the signal multiple times, // with roughly the same gap between them). repeatCount++; if (repeatCount == 2) { for(unsigned int i = 1; i <= numProto; i++) { if (receiveProtocol(i, changeCount)) { // receive succeeded for protocol i break; } } repeatCount = 0; } } changeCount = 0; } // detect overflow if (changeCount >= RCSWITCH_MAX_CHANGES) { changeCount = 0; repeatCount = 0; } RCSwitch::timings[changeCount++] = duration; lastTime = time; } #endif