mirror of
https://github.com/nunocoracao/blowfish.git
synced 2026-01-30 16:31:52 +01:00
config redirect
This commit is contained in:
24
node_modules/robust-predicates/LICENSE
generated
vendored
Normal file
24
node_modules/robust-predicates/LICENSE
generated
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
This is free and unencumbered software released into the public domain.
|
||||
|
||||
Anyone is free to copy, modify, publish, use, compile, sell, or
|
||||
distribute this software, either in source code form or as a compiled
|
||||
binary, for any purpose, commercial or non-commercial, and by any
|
||||
means.
|
||||
|
||||
In jurisdictions that recognize copyright laws, the author or authors
|
||||
of this software dedicate any and all copyright interest in the
|
||||
software to the public domain. We make this dedication for the benefit
|
||||
of the public at large and to the detriment of our heirs and
|
||||
successors. We intend this dedication to be an overt act of
|
||||
relinquishment in perpetuity of all present and future rights to this
|
||||
software under copyright law.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||||
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
For more information, please refer to <http://unlicense.org>
|
||||
82
node_modules/robust-predicates/README.md
generated
vendored
Normal file
82
node_modules/robust-predicates/README.md
generated
vendored
Normal file
@@ -0,0 +1,82 @@
|
||||
# robust-predicates
|
||||
|
||||
Fast robust predicates for computational geometry in JavaScript. Provides reliable 2D and 3D point orientation tests (`orient2d`, `orient3d`, `incircle`, `insphere`) that are not susceptible to floating point errors (without sacrificing performance). A modern port of [Jonathan R Shewchuk's C code](https://www.cs.cmu.edu/~quake/robust.html), an industry standard since 1996.
|
||||
|
||||
<a href="https://observablehq.com/@mourner/non-robust-arithmetic-as-art"><img width="600" height="200" src="predicates.png" /></a>
|
||||
|
||||
_Figure: non-robust vs robust `orient2d` test for points within a tiny range (2<sup>-42</sup>)._
|
||||
|
||||
[](https://travis-ci.com/mourner/robust-predicates)
|
||||
[](https://github.com/mourner/projects)
|
||||
[](https://unpkg.com/robust-predicates)
|
||||
|
||||
## [Demo](https://observablehq.com/@mourner/non-robust-arithmetic-as-art)
|
||||
|
||||
## API
|
||||
|
||||
Note: unlike J. Shewchuk's original code, all the functions in this library assume `y` axis is oriented _downwards_ ↓, so the semantics are different.
|
||||
|
||||
### `orient2d(ax,ay, bx,by, cx,cy)`
|
||||
|
||||
- Returns a *positive* value if the points `a`, `b`, and `c` occur in _counterclockwise_ order (`c` lies to the left of the directed line defined by points `a` and `b`).
|
||||
- Returns a *negative* value if they occur in _clockwise_ order (`c` lies to the right of the directed line `ab`).
|
||||
- Returns *zero* if they are _collinear_.
|
||||
|
||||
The result is also an approximation of twice the signed area of the triangle defined by the three points.
|
||||
|
||||
### `incircle(ax,ay, bx,by, cx,cy, dx,dy)`
|
||||
|
||||
- Returns a _positive_ value if the point `d` lies _outside_ the circle passing through `a`, `b`, and `c`.
|
||||
- Returns a _negative_ value if it lies _inside_.
|
||||
- Returns _zero_ if the four points are _cocircular_.
|
||||
|
||||
The points `a`, `b`, and `c` must be in _counterclockwise_ order, or the sign of the result will be reversed.
|
||||
|
||||
### `orient3d(ax,ay,az, bx,by,bz, cx,cy,cz, dx,dy,dz)`
|
||||
|
||||
- Returns a _positive_ value if the point `d` lies _above_ the plane passing through `a`, `b`, and `c`, meaning that `a`, `b`, and `c` appear in counterclockwise order when viewed from `d`.
|
||||
- Returns a _negative_ value if `d` lies _below_ the plane.
|
||||
- Returns _zero_ if the points are _coplanar_.
|
||||
|
||||
The result is also an approximation of six times the signed volume of the tetrahedron defined by the four points.
|
||||
|
||||
### `insphere(ax,ay,az, bx,by,bz, cx,cy,cz, dx,dy,dz, ex,ey,ez)`
|
||||
|
||||
- Returns a _positive_ value if the point `e` lies _outside_ the sphere passing through `a`, `b`, `c`, and `d`.
|
||||
- Returns a _negative_ value if it lies _inside_.
|
||||
- Returns _zero_ if the five points are _cospherical_.
|
||||
|
||||
The points `a`, `b`, `c`, and `d` must be ordered so that they have a _positive orientation_
|
||||
(as defined by `orient3d`), or the sign of the result will be reversed.
|
||||
|
||||
### `orient2dfast`, `orient3dfast`, `incirclefast`, `inspherefast`
|
||||
|
||||
Simple, approximate, non-robust versions of predicates above. Use when robustness isn't needed.
|
||||
|
||||
## Example
|
||||
|
||||
```js
|
||||
import {orient2d} from 'robust-predicates';
|
||||
|
||||
const ccw = orient2d(ax, ay, bx, by, cx, cy) > 0;
|
||||
````
|
||||
|
||||
## Install
|
||||
|
||||
Install with `npm install robust-predicates` or `yarn add robust-predicates`, or use one of the browser builds:
|
||||
|
||||
- [predicates.min.js](https://unpkg.com/robust-predicates/umd/predicates.min.js) (all predicates)
|
||||
- [orient2d.min.js](https://unpkg.com/robust-predicates/umd/orient2d.min.js) (`orient2d`, `orient2dfast`)
|
||||
- [orient3d.min.js](https://unpkg.com/robust-predicates/umd/orient3d.min.js) (`orient3d`, `orient3dfast`)
|
||||
- [incircle.min.js](https://unpkg.com/robust-predicates/umd/incircle.min.js) (`incircle`, `incirclefast`)
|
||||
- [insphere.min.js](https://unpkg.com/robust-predicates/umd/insphere.min.js) (`insphere`, `inspherefast`)
|
||||
|
||||
## Thanks
|
||||
|
||||
This project is just a port — all the brilliant, hard work was done by [Jonathan Richard Shewchuk](https://people.eecs.berkeley.edu/~jrs/).
|
||||
|
||||
The port was also inspired by [Mikola Lysenko](https://twitter.com/MikolaLysenko)'s excellent [Robust Arithmetic Notes](https://github.com/mikolalysenko/robust-arithmetic-notes) and related projects like [robust-orientation](https://github.com/mikolalysenko/robust-orientation) and [robust-in-sphere](https://github.com/mikolalysenko/robust-in-sphere).
|
||||
|
||||
## License
|
||||
|
||||
Since the original code is in the public domain, this project follows the same choice. See [Unlicense](https://unlicense.org).
|
||||
765
node_modules/robust-predicates/esm/incircle.js
generated
vendored
Normal file
765
node_modules/robust-predicates/esm/incircle.js
generated
vendored
Normal file
@@ -0,0 +1,765 @@
|
||||
import {epsilon, splitter, resulterrbound, estimate, vec, sum, sum_three, scale} from './util.js';
|
||||
|
||||
const iccerrboundA = (10 + 96 * epsilon) * epsilon;
|
||||
const iccerrboundB = (4 + 48 * epsilon) * epsilon;
|
||||
const iccerrboundC = (44 + 576 * epsilon) * epsilon * epsilon;
|
||||
|
||||
const bc = vec(4);
|
||||
const ca = vec(4);
|
||||
const ab = vec(4);
|
||||
const aa = vec(4);
|
||||
const bb = vec(4);
|
||||
const cc = vec(4);
|
||||
const u = vec(4);
|
||||
const v = vec(4);
|
||||
const axtbc = vec(8);
|
||||
const aytbc = vec(8);
|
||||
const bxtca = vec(8);
|
||||
const bytca = vec(8);
|
||||
const cxtab = vec(8);
|
||||
const cytab = vec(8);
|
||||
const abt = vec(8);
|
||||
const bct = vec(8);
|
||||
const cat = vec(8);
|
||||
const abtt = vec(4);
|
||||
const bctt = vec(4);
|
||||
const catt = vec(4);
|
||||
|
||||
const _8 = vec(8);
|
||||
const _16 = vec(16);
|
||||
const _16b = vec(16);
|
||||
const _16c = vec(16);
|
||||
const _32 = vec(32);
|
||||
const _32b = vec(32);
|
||||
const _48 = vec(48);
|
||||
const _64 = vec(64);
|
||||
|
||||
let fin = vec(1152);
|
||||
let fin2 = vec(1152);
|
||||
|
||||
function finadd(finlen, a, alen) {
|
||||
finlen = sum(finlen, fin, a, alen, fin2);
|
||||
const tmp = fin; fin = fin2; fin2 = tmp;
|
||||
return finlen;
|
||||
}
|
||||
|
||||
function incircleadapt(ax, ay, bx, by, cx, cy, dx, dy, permanent) {
|
||||
let finlen;
|
||||
let adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
|
||||
let axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
|
||||
let abtlen, bctlen, catlen;
|
||||
let abttlen, bcttlen, cattlen;
|
||||
let n1, n0;
|
||||
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
||||
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
|
||||
s1 = bdx * cdy;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdx * bdy;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bc[3] = u3;
|
||||
s1 = cdx * ady;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adx * cdy;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ca[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ca[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ca[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ca[3] = u3;
|
||||
s1 = adx * bdy;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdx * ady;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ab[3] = u3;
|
||||
|
||||
finlen = sum(
|
||||
sum(
|
||||
sum(
|
||||
scale(scale(4, bc, adx, _8), _8, adx, _16), _16,
|
||||
scale(scale(4, bc, ady, _8), _8, ady, _16b), _16b, _32), _32,
|
||||
sum(
|
||||
scale(scale(4, ca, bdx, _8), _8, bdx, _16), _16,
|
||||
scale(scale(4, ca, bdy, _8), _8, bdy, _16b), _16b, _32b), _32b, _64), _64,
|
||||
sum(
|
||||
scale(scale(4, ab, cdx, _8), _8, cdx, _16), _16,
|
||||
scale(scale(4, ab, cdy, _8), _8, cdy, _16b), _16b, _32), _32, fin);
|
||||
|
||||
let det = estimate(finlen, fin);
|
||||
let errbound = iccerrboundB * permanent;
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
bvirt = ax - adx;
|
||||
adxtail = ax - (adx + bvirt) + (bvirt - dx);
|
||||
bvirt = ay - ady;
|
||||
adytail = ay - (ady + bvirt) + (bvirt - dy);
|
||||
bvirt = bx - bdx;
|
||||
bdxtail = bx - (bdx + bvirt) + (bvirt - dx);
|
||||
bvirt = by - bdy;
|
||||
bdytail = by - (bdy + bvirt) + (bvirt - dy);
|
||||
bvirt = cx - cdx;
|
||||
cdxtail = cx - (cdx + bvirt) + (bvirt - dx);
|
||||
bvirt = cy - cdy;
|
||||
cdytail = cy - (cdy + bvirt) + (bvirt - dy);
|
||||
if (adxtail === 0 && bdxtail === 0 && cdxtail === 0 && adytail === 0 && bdytail === 0 && cdytail === 0) {
|
||||
return det;
|
||||
}
|
||||
|
||||
errbound = iccerrboundC * permanent + resulterrbound * Math.abs(det);
|
||||
det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail)) +
|
||||
2 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx)) +
|
||||
((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail)) +
|
||||
2 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) +
|
||||
((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail)) +
|
||||
2 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
|
||||
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
if (bdxtail !== 0 || bdytail !== 0 || cdxtail !== 0 || cdytail !== 0) {
|
||||
s1 = adx * adx;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
t1 = ady * ady;
|
||||
c = splitter * ady;
|
||||
ahi = c - (c - ady);
|
||||
alo = ady - ahi;
|
||||
t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
aa[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
aa[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
aa[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
aa[3] = u3;
|
||||
}
|
||||
if (cdxtail !== 0 || cdytail !== 0 || adxtail !== 0 || adytail !== 0) {
|
||||
s1 = bdx * bdx;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
t1 = bdy * bdy;
|
||||
c = splitter * bdy;
|
||||
ahi = c - (c - bdy);
|
||||
alo = bdy - ahi;
|
||||
t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
bb[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
bb[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bb[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bb[3] = u3;
|
||||
}
|
||||
if (adxtail !== 0 || adytail !== 0 || bdxtail !== 0 || bdytail !== 0) {
|
||||
s1 = cdx * cdx;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
t1 = cdy * cdy;
|
||||
c = splitter * cdy;
|
||||
ahi = c - (c - cdy);
|
||||
alo = cdy - ahi;
|
||||
t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
cc[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
cc[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
cc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
cc[3] = u3;
|
||||
}
|
||||
|
||||
if (adxtail !== 0) {
|
||||
axtbclen = scale(4, bc, adxtail, axtbc);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(axtbclen, axtbc, 2 * adx, _16), _16,
|
||||
scale(scale(4, cc, adxtail, _8), _8, bdy, _16b), _16b,
|
||||
scale(scale(4, bb, adxtail, _8), _8, -cdy, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (adytail !== 0) {
|
||||
aytbclen = scale(4, bc, adytail, aytbc);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(aytbclen, aytbc, 2 * ady, _16), _16,
|
||||
scale(scale(4, bb, adytail, _8), _8, cdx, _16b), _16b,
|
||||
scale(scale(4, cc, adytail, _8), _8, -bdx, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (bdxtail !== 0) {
|
||||
bxtcalen = scale(4, ca, bdxtail, bxtca);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(bxtcalen, bxtca, 2 * bdx, _16), _16,
|
||||
scale(scale(4, aa, bdxtail, _8), _8, cdy, _16b), _16b,
|
||||
scale(scale(4, cc, bdxtail, _8), _8, -ady, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (bdytail !== 0) {
|
||||
bytcalen = scale(4, ca, bdytail, bytca);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(bytcalen, bytca, 2 * bdy, _16), _16,
|
||||
scale(scale(4, cc, bdytail, _8), _8, adx, _16b), _16b,
|
||||
scale(scale(4, aa, bdytail, _8), _8, -cdx, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (cdxtail !== 0) {
|
||||
cxtablen = scale(4, ab, cdxtail, cxtab);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(cxtablen, cxtab, 2 * cdx, _16), _16,
|
||||
scale(scale(4, bb, cdxtail, _8), _8, ady, _16b), _16b,
|
||||
scale(scale(4, aa, cdxtail, _8), _8, -bdy, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (cdytail !== 0) {
|
||||
cytablen = scale(4, ab, cdytail, cytab);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(cytablen, cytab, 2 * cdy, _16), _16,
|
||||
scale(scale(4, aa, cdytail, _8), _8, bdx, _16b), _16b,
|
||||
scale(scale(4, bb, cdytail, _8), _8, -adx, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
|
||||
if (adxtail !== 0 || adytail !== 0) {
|
||||
if (bdxtail !== 0 || bdytail !== 0 || cdxtail !== 0 || cdytail !== 0) {
|
||||
s1 = bdxtail * cdy;
|
||||
c = splitter * bdxtail;
|
||||
ahi = c - (c - bdxtail);
|
||||
alo = bdxtail - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdx * cdytail;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * cdytail;
|
||||
bhi = c - (c - cdytail);
|
||||
blo = cdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
u[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
u[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
s1 = cdxtail * -bdy;
|
||||
c = splitter * cdxtail;
|
||||
ahi = c - (c - cdxtail);
|
||||
alo = cdxtail - ahi;
|
||||
c = splitter * -bdy;
|
||||
bhi = c - (c - -bdy);
|
||||
blo = -bdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdx * -bdytail;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * -bdytail;
|
||||
bhi = c - (c - -bdytail);
|
||||
blo = -bdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
v[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
v[3] = u3;
|
||||
bctlen = sum(4, u, 4, v, bct);
|
||||
s1 = bdxtail * cdytail;
|
||||
c = splitter * bdxtail;
|
||||
ahi = c - (c - bdxtail);
|
||||
alo = bdxtail - ahi;
|
||||
c = splitter * cdytail;
|
||||
bhi = c - (c - cdytail);
|
||||
blo = cdytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdxtail * bdytail;
|
||||
c = splitter * cdxtail;
|
||||
ahi = c - (c - cdxtail);
|
||||
alo = cdxtail - ahi;
|
||||
c = splitter * bdytail;
|
||||
bhi = c - (c - bdytail);
|
||||
blo = bdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bctt[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bctt[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bctt[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bctt[3] = u3;
|
||||
bcttlen = 4;
|
||||
} else {
|
||||
bct[0] = 0;
|
||||
bctlen = 1;
|
||||
bctt[0] = 0;
|
||||
bcttlen = 1;
|
||||
}
|
||||
if (adxtail !== 0) {
|
||||
const len = scale(bctlen, bct, adxtail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(axtbclen, axtbc, adxtail, _16), _16,
|
||||
scale(len, _16c, 2 * adx, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(bcttlen, bctt, adxtail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * adx, _16), _16,
|
||||
scale(len2, _8, adxtail, _16b), _16b,
|
||||
scale(len, _16c, adxtail, _32), _32, _32b, _64), _64);
|
||||
|
||||
if (bdytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, cc, adxtail, _8), _8, bdytail, _16), _16);
|
||||
}
|
||||
if (cdytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, bb, -adxtail, _8), _8, cdytail, _16), _16);
|
||||
}
|
||||
}
|
||||
if (adytail !== 0) {
|
||||
const len = scale(bctlen, bct, adytail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(aytbclen, aytbc, adytail, _16), _16,
|
||||
scale(len, _16c, 2 * ady, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(bcttlen, bctt, adytail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * ady, _16), _16,
|
||||
scale(len2, _8, adytail, _16b), _16b,
|
||||
scale(len, _16c, adytail, _32), _32, _32b, _64), _64);
|
||||
}
|
||||
}
|
||||
if (bdxtail !== 0 || bdytail !== 0) {
|
||||
if (cdxtail !== 0 || cdytail !== 0 || adxtail !== 0 || adytail !== 0) {
|
||||
s1 = cdxtail * ady;
|
||||
c = splitter * cdxtail;
|
||||
ahi = c - (c - cdxtail);
|
||||
alo = cdxtail - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdx * adytail;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * adytail;
|
||||
bhi = c - (c - adytail);
|
||||
blo = adytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
u[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
u[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
n1 = -cdy;
|
||||
n0 = -cdytail;
|
||||
s1 = adxtail * n1;
|
||||
c = splitter * adxtail;
|
||||
ahi = c - (c - adxtail);
|
||||
alo = adxtail - ahi;
|
||||
c = splitter * n1;
|
||||
bhi = c - (c - n1);
|
||||
blo = n1 - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adx * n0;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * n0;
|
||||
bhi = c - (c - n0);
|
||||
blo = n0 - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
v[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
v[3] = u3;
|
||||
catlen = sum(4, u, 4, v, cat);
|
||||
s1 = cdxtail * adytail;
|
||||
c = splitter * cdxtail;
|
||||
ahi = c - (c - cdxtail);
|
||||
alo = cdxtail - ahi;
|
||||
c = splitter * adytail;
|
||||
bhi = c - (c - adytail);
|
||||
blo = adytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adxtail * cdytail;
|
||||
c = splitter * adxtail;
|
||||
ahi = c - (c - adxtail);
|
||||
alo = adxtail - ahi;
|
||||
c = splitter * cdytail;
|
||||
bhi = c - (c - cdytail);
|
||||
blo = cdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
catt[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
catt[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
catt[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
catt[3] = u3;
|
||||
cattlen = 4;
|
||||
} else {
|
||||
cat[0] = 0;
|
||||
catlen = 1;
|
||||
catt[0] = 0;
|
||||
cattlen = 1;
|
||||
}
|
||||
if (bdxtail !== 0) {
|
||||
const len = scale(catlen, cat, bdxtail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(bxtcalen, bxtca, bdxtail, _16), _16,
|
||||
scale(len, _16c, 2 * bdx, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(cattlen, catt, bdxtail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * bdx, _16), _16,
|
||||
scale(len2, _8, bdxtail, _16b), _16b,
|
||||
scale(len, _16c, bdxtail, _32), _32, _32b, _64), _64);
|
||||
|
||||
if (cdytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, aa, bdxtail, _8), _8, cdytail, _16), _16);
|
||||
}
|
||||
if (adytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, cc, -bdxtail, _8), _8, adytail, _16), _16);
|
||||
}
|
||||
}
|
||||
if (bdytail !== 0) {
|
||||
const len = scale(catlen, cat, bdytail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(bytcalen, bytca, bdytail, _16), _16,
|
||||
scale(len, _16c, 2 * bdy, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(cattlen, catt, bdytail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * bdy, _16), _16,
|
||||
scale(len2, _8, bdytail, _16b), _16b,
|
||||
scale(len, _16c, bdytail, _32), _32, _32b, _64), _64);
|
||||
}
|
||||
}
|
||||
if (cdxtail !== 0 || cdytail !== 0) {
|
||||
if (adxtail !== 0 || adytail !== 0 || bdxtail !== 0 || bdytail !== 0) {
|
||||
s1 = adxtail * bdy;
|
||||
c = splitter * adxtail;
|
||||
ahi = c - (c - adxtail);
|
||||
alo = adxtail - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adx * bdytail;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * bdytail;
|
||||
bhi = c - (c - bdytail);
|
||||
blo = bdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
u[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
u[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
n1 = -ady;
|
||||
n0 = -adytail;
|
||||
s1 = bdxtail * n1;
|
||||
c = splitter * bdxtail;
|
||||
ahi = c - (c - bdxtail);
|
||||
alo = bdxtail - ahi;
|
||||
c = splitter * n1;
|
||||
bhi = c - (c - n1);
|
||||
blo = n1 - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdx * n0;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * n0;
|
||||
bhi = c - (c - n0);
|
||||
blo = n0 - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
v[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
v[3] = u3;
|
||||
abtlen = sum(4, u, 4, v, abt);
|
||||
s1 = adxtail * bdytail;
|
||||
c = splitter * adxtail;
|
||||
ahi = c - (c - adxtail);
|
||||
alo = adxtail - ahi;
|
||||
c = splitter * bdytail;
|
||||
bhi = c - (c - bdytail);
|
||||
blo = bdytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdxtail * adytail;
|
||||
c = splitter * bdxtail;
|
||||
ahi = c - (c - bdxtail);
|
||||
alo = bdxtail - ahi;
|
||||
c = splitter * adytail;
|
||||
bhi = c - (c - adytail);
|
||||
blo = adytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
abtt[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
abtt[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
abtt[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
abtt[3] = u3;
|
||||
abttlen = 4;
|
||||
} else {
|
||||
abt[0] = 0;
|
||||
abtlen = 1;
|
||||
abtt[0] = 0;
|
||||
abttlen = 1;
|
||||
}
|
||||
if (cdxtail !== 0) {
|
||||
const len = scale(abtlen, abt, cdxtail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(cxtablen, cxtab, cdxtail, _16), _16,
|
||||
scale(len, _16c, 2 * cdx, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(abttlen, abtt, cdxtail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * cdx, _16), _16,
|
||||
scale(len2, _8, cdxtail, _16b), _16b,
|
||||
scale(len, _16c, cdxtail, _32), _32, _32b, _64), _64);
|
||||
|
||||
if (adytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, bb, cdxtail, _8), _8, adytail, _16), _16);
|
||||
}
|
||||
if (bdytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, aa, -cdxtail, _8), _8, bdytail, _16), _16);
|
||||
}
|
||||
}
|
||||
if (cdytail !== 0) {
|
||||
const len = scale(abtlen, abt, cdytail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(cytablen, cytab, cdytail, _16), _16,
|
||||
scale(len, _16c, 2 * cdy, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(abttlen, abtt, cdytail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * cdy, _16), _16,
|
||||
scale(len2, _8, cdytail, _16b), _16b,
|
||||
scale(len, _16c, cdytail, _32), _32, _32b, _64), _64);
|
||||
}
|
||||
}
|
||||
|
||||
return fin[finlen - 1];
|
||||
}
|
||||
|
||||
export function incircle(ax, ay, bx, by, cx, cy, dx, dy) {
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
|
||||
const bdxcdy = bdx * cdy;
|
||||
const cdxbdy = cdx * bdy;
|
||||
const alift = adx * adx + ady * ady;
|
||||
|
||||
const cdxady = cdx * ady;
|
||||
const adxcdy = adx * cdy;
|
||||
const blift = bdx * bdx + bdy * bdy;
|
||||
|
||||
const adxbdy = adx * bdy;
|
||||
const bdxady = bdx * ady;
|
||||
const clift = cdx * cdx + cdy * cdy;
|
||||
|
||||
const det =
|
||||
alift * (bdxcdy - cdxbdy) +
|
||||
blift * (cdxady - adxcdy) +
|
||||
clift * (adxbdy - bdxady);
|
||||
|
||||
const permanent =
|
||||
(Math.abs(bdxcdy) + Math.abs(cdxbdy)) * alift +
|
||||
(Math.abs(cdxady) + Math.abs(adxcdy)) * blift +
|
||||
(Math.abs(adxbdy) + Math.abs(bdxady)) * clift;
|
||||
|
||||
const errbound = iccerrboundA * permanent;
|
||||
|
||||
if (det > errbound || -det > errbound) {
|
||||
return det;
|
||||
}
|
||||
return incircleadapt(ax, ay, bx, by, cx, cy, dx, dy, permanent);
|
||||
}
|
||||
|
||||
export function incirclefast(ax, ay, bx, by, cx, cy, dx, dy) {
|
||||
const adx = ax - dx;
|
||||
const ady = ay - dy;
|
||||
const bdx = bx - dx;
|
||||
const bdy = by - dy;
|
||||
const cdx = cx - dx;
|
||||
const cdy = cy - dy;
|
||||
|
||||
const abdet = adx * bdy - bdx * ady;
|
||||
const bcdet = bdx * cdy - cdx * bdy;
|
||||
const cadet = cdx * ady - adx * cdy;
|
||||
const alift = adx * adx + ady * ady;
|
||||
const blift = bdx * bdx + bdy * bdy;
|
||||
const clift = cdx * cdx + cdy * cdy;
|
||||
|
||||
return alift * bcdet + blift * cadet + clift * abdet;
|
||||
}
|
||||
775
node_modules/robust-predicates/esm/insphere.js
generated
vendored
Normal file
775
node_modules/robust-predicates/esm/insphere.js
generated
vendored
Normal file
@@ -0,0 +1,775 @@
|
||||
import {epsilon, splitter, resulterrbound, estimate, vec, sum, sum_three, scale, negate} from './util.js';
|
||||
|
||||
const isperrboundA = (16 + 224 * epsilon) * epsilon;
|
||||
const isperrboundB = (5 + 72 * epsilon) * epsilon;
|
||||
const isperrboundC = (71 + 1408 * epsilon) * epsilon * epsilon;
|
||||
|
||||
const ab = vec(4);
|
||||
const bc = vec(4);
|
||||
const cd = vec(4);
|
||||
const de = vec(4);
|
||||
const ea = vec(4);
|
||||
const ac = vec(4);
|
||||
const bd = vec(4);
|
||||
const ce = vec(4);
|
||||
const da = vec(4);
|
||||
const eb = vec(4);
|
||||
|
||||
const abc = vec(24);
|
||||
const bcd = vec(24);
|
||||
const cde = vec(24);
|
||||
const dea = vec(24);
|
||||
const eab = vec(24);
|
||||
const abd = vec(24);
|
||||
const bce = vec(24);
|
||||
const cda = vec(24);
|
||||
const deb = vec(24);
|
||||
const eac = vec(24);
|
||||
|
||||
const adet = vec(1152);
|
||||
const bdet = vec(1152);
|
||||
const cdet = vec(1152);
|
||||
const ddet = vec(1152);
|
||||
const edet = vec(1152);
|
||||
const abdet = vec(2304);
|
||||
const cddet = vec(2304);
|
||||
const cdedet = vec(3456);
|
||||
const deter = vec(5760);
|
||||
|
||||
const _8 = vec(8);
|
||||
const _8b = vec(8);
|
||||
const _8c = vec(8);
|
||||
const _16 = vec(16);
|
||||
const _24 = vec(24);
|
||||
const _48 = vec(48);
|
||||
const _48b = vec(48);
|
||||
const _96 = vec(96);
|
||||
const _192 = vec(192);
|
||||
const _384x = vec(384);
|
||||
const _384y = vec(384);
|
||||
const _384z = vec(384);
|
||||
const _768 = vec(768);
|
||||
|
||||
function sum_three_scale(a, b, c, az, bz, cz, out) {
|
||||
return sum_three(
|
||||
scale(4, a, az, _8), _8,
|
||||
scale(4, b, bz, _8b), _8b,
|
||||
scale(4, c, cz, _8c), _8c, _16, out);
|
||||
}
|
||||
|
||||
function liftexact(alen, a, blen, b, clen, c, dlen, d, x, y, z, out) {
|
||||
const len = sum(
|
||||
sum(alen, a, blen, b, _48), _48,
|
||||
negate(sum(clen, c, dlen, d, _48b), _48b), _48b, _96);
|
||||
|
||||
return sum_three(
|
||||
scale(scale(len, _96, x, _192), _192, x, _384x), _384x,
|
||||
scale(scale(len, _96, y, _192), _192, y, _384y), _384y,
|
||||
scale(scale(len, _96, z, _192), _192, z, _384z), _384z, _768, out);
|
||||
}
|
||||
|
||||
function insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) {
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
||||
|
||||
s1 = ax * by;
|
||||
c = splitter * ax;
|
||||
ahi = c - (c - ax);
|
||||
alo = ax - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bx * ay;
|
||||
c = splitter * bx;
|
||||
ahi = c - (c - bx);
|
||||
alo = bx - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ab[3] = u3;
|
||||
s1 = bx * cy;
|
||||
c = splitter * bx;
|
||||
ahi = c - (c - bx);
|
||||
alo = bx - ahi;
|
||||
c = splitter * cy;
|
||||
bhi = c - (c - cy);
|
||||
blo = cy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cx * by;
|
||||
c = splitter * cx;
|
||||
ahi = c - (c - cx);
|
||||
alo = cx - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bc[3] = u3;
|
||||
s1 = cx * dy;
|
||||
c = splitter * cx;
|
||||
ahi = c - (c - cx);
|
||||
alo = cx - ahi;
|
||||
c = splitter * dy;
|
||||
bhi = c - (c - dy);
|
||||
blo = dy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = dx * cy;
|
||||
c = splitter * dx;
|
||||
ahi = c - (c - dx);
|
||||
alo = dx - ahi;
|
||||
c = splitter * cy;
|
||||
bhi = c - (c - cy);
|
||||
blo = cy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
cd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
cd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
cd[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
cd[3] = u3;
|
||||
s1 = dx * ey;
|
||||
c = splitter * dx;
|
||||
ahi = c - (c - dx);
|
||||
alo = dx - ahi;
|
||||
c = splitter * ey;
|
||||
bhi = c - (c - ey);
|
||||
blo = ey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ex * dy;
|
||||
c = splitter * ex;
|
||||
ahi = c - (c - ex);
|
||||
alo = ex - ahi;
|
||||
c = splitter * dy;
|
||||
bhi = c - (c - dy);
|
||||
blo = dy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
de[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
de[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
de[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
de[3] = u3;
|
||||
s1 = ex * ay;
|
||||
c = splitter * ex;
|
||||
ahi = c - (c - ex);
|
||||
alo = ex - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ax * ey;
|
||||
c = splitter * ax;
|
||||
ahi = c - (c - ax);
|
||||
alo = ax - ahi;
|
||||
c = splitter * ey;
|
||||
bhi = c - (c - ey);
|
||||
blo = ey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ea[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ea[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ea[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ea[3] = u3;
|
||||
s1 = ax * cy;
|
||||
c = splitter * ax;
|
||||
ahi = c - (c - ax);
|
||||
alo = ax - ahi;
|
||||
c = splitter * cy;
|
||||
bhi = c - (c - cy);
|
||||
blo = cy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cx * ay;
|
||||
c = splitter * cx;
|
||||
ahi = c - (c - cx);
|
||||
alo = cx - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ac[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ac[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ac[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ac[3] = u3;
|
||||
s1 = bx * dy;
|
||||
c = splitter * bx;
|
||||
ahi = c - (c - bx);
|
||||
alo = bx - ahi;
|
||||
c = splitter * dy;
|
||||
bhi = c - (c - dy);
|
||||
blo = dy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = dx * by;
|
||||
c = splitter * dx;
|
||||
ahi = c - (c - dx);
|
||||
alo = dx - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bd[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bd[3] = u3;
|
||||
s1 = cx * ey;
|
||||
c = splitter * cx;
|
||||
ahi = c - (c - cx);
|
||||
alo = cx - ahi;
|
||||
c = splitter * ey;
|
||||
bhi = c - (c - ey);
|
||||
blo = ey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ex * cy;
|
||||
c = splitter * ex;
|
||||
ahi = c - (c - ex);
|
||||
alo = ex - ahi;
|
||||
c = splitter * cy;
|
||||
bhi = c - (c - cy);
|
||||
blo = cy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ce[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ce[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ce[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ce[3] = u3;
|
||||
s1 = dx * ay;
|
||||
c = splitter * dx;
|
||||
ahi = c - (c - dx);
|
||||
alo = dx - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ax * dy;
|
||||
c = splitter * ax;
|
||||
ahi = c - (c - ax);
|
||||
alo = ax - ahi;
|
||||
c = splitter * dy;
|
||||
bhi = c - (c - dy);
|
||||
blo = dy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
da[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
da[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
da[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
da[3] = u3;
|
||||
s1 = ex * by;
|
||||
c = splitter * ex;
|
||||
ahi = c - (c - ex);
|
||||
alo = ex - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bx * ey;
|
||||
c = splitter * bx;
|
||||
ahi = c - (c - bx);
|
||||
alo = bx - ahi;
|
||||
c = splitter * ey;
|
||||
bhi = c - (c - ey);
|
||||
blo = ey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
eb[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
eb[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
eb[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
eb[3] = u3;
|
||||
|
||||
const abclen = sum_three_scale(ab, bc, ac, cz, az, -bz, abc);
|
||||
const bcdlen = sum_three_scale(bc, cd, bd, dz, bz, -cz, bcd);
|
||||
const cdelen = sum_three_scale(cd, de, ce, ez, cz, -dz, cde);
|
||||
const dealen = sum_three_scale(de, ea, da, az, dz, -ez, dea);
|
||||
const eablen = sum_three_scale(ea, ab, eb, bz, ez, -az, eab);
|
||||
const abdlen = sum_three_scale(ab, bd, da, dz, az, bz, abd);
|
||||
const bcelen = sum_three_scale(bc, ce, eb, ez, bz, cz, bce);
|
||||
const cdalen = sum_three_scale(cd, da, ac, az, cz, dz, cda);
|
||||
const deblen = sum_three_scale(de, eb, bd, bz, dz, ez, deb);
|
||||
const eaclen = sum_three_scale(ea, ac, ce, cz, ez, az, eac);
|
||||
|
||||
const deterlen = sum_three(
|
||||
liftexact(cdelen, cde, bcelen, bce, deblen, deb, bcdlen, bcd, ax, ay, az, adet), adet,
|
||||
liftexact(dealen, dea, cdalen, cda, eaclen, eac, cdelen, cde, bx, by, bz, bdet), bdet,
|
||||
sum_three(
|
||||
liftexact(eablen, eab, deblen, deb, abdlen, abd, dealen, dea, cx, cy, cz, cdet), cdet,
|
||||
liftexact(abclen, abc, eaclen, eac, bcelen, bce, eablen, eab, dx, dy, dz, ddet), ddet,
|
||||
liftexact(bcdlen, bcd, abdlen, abd, cdalen, cda, abclen, abc, ex, ey, ez, edet), edet, cddet, cdedet), cdedet, abdet, deter);
|
||||
|
||||
return deter[deterlen - 1];
|
||||
}
|
||||
|
||||
const xdet = vec(96);
|
||||
const ydet = vec(96);
|
||||
const zdet = vec(96);
|
||||
const fin = vec(1152);
|
||||
|
||||
function liftadapt(a, b, c, az, bz, cz, x, y, z, out) {
|
||||
const len = sum_three_scale(a, b, c, az, bz, cz, _24);
|
||||
return sum_three(
|
||||
scale(scale(len, _24, x, _48), _48, x, xdet), xdet,
|
||||
scale(scale(len, _24, y, _48), _48, y, ydet), ydet,
|
||||
scale(scale(len, _24, z, _48), _48, z, zdet), zdet, _192, out);
|
||||
}
|
||||
|
||||
function insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent) {
|
||||
let ab3, bc3, cd3, da3, ac3, bd3;
|
||||
|
||||
let aextail, bextail, cextail, dextail;
|
||||
let aeytail, beytail, ceytail, deytail;
|
||||
let aeztail, beztail, ceztail, deztail;
|
||||
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0;
|
||||
|
||||
const aex = ax - ex;
|
||||
const bex = bx - ex;
|
||||
const cex = cx - ex;
|
||||
const dex = dx - ex;
|
||||
const aey = ay - ey;
|
||||
const bey = by - ey;
|
||||
const cey = cy - ey;
|
||||
const dey = dy - ey;
|
||||
const aez = az - ez;
|
||||
const bez = bz - ez;
|
||||
const cez = cz - ez;
|
||||
const dez = dz - ez;
|
||||
|
||||
s1 = aex * bey;
|
||||
c = splitter * aex;
|
||||
ahi = c - (c - aex);
|
||||
alo = aex - ahi;
|
||||
c = splitter * bey;
|
||||
bhi = c - (c - bey);
|
||||
blo = bey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bex * aey;
|
||||
c = splitter * bex;
|
||||
ahi = c - (c - bex);
|
||||
alo = bex - ahi;
|
||||
c = splitter * aey;
|
||||
bhi = c - (c - aey);
|
||||
blo = aey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
ab3 = _j + _i;
|
||||
bvirt = ab3 - _j;
|
||||
ab[2] = _j - (ab3 - bvirt) + (_i - bvirt);
|
||||
ab[3] = ab3;
|
||||
s1 = bex * cey;
|
||||
c = splitter * bex;
|
||||
ahi = c - (c - bex);
|
||||
alo = bex - ahi;
|
||||
c = splitter * cey;
|
||||
bhi = c - (c - cey);
|
||||
blo = cey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cex * bey;
|
||||
c = splitter * cex;
|
||||
ahi = c - (c - cex);
|
||||
alo = cex - ahi;
|
||||
c = splitter * bey;
|
||||
bhi = c - (c - bey);
|
||||
blo = bey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
bc3 = _j + _i;
|
||||
bvirt = bc3 - _j;
|
||||
bc[2] = _j - (bc3 - bvirt) + (_i - bvirt);
|
||||
bc[3] = bc3;
|
||||
s1 = cex * dey;
|
||||
c = splitter * cex;
|
||||
ahi = c - (c - cex);
|
||||
alo = cex - ahi;
|
||||
c = splitter * dey;
|
||||
bhi = c - (c - dey);
|
||||
blo = dey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = dex * cey;
|
||||
c = splitter * dex;
|
||||
ahi = c - (c - dex);
|
||||
alo = dex - ahi;
|
||||
c = splitter * cey;
|
||||
bhi = c - (c - cey);
|
||||
blo = cey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
cd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
cd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
cd3 = _j + _i;
|
||||
bvirt = cd3 - _j;
|
||||
cd[2] = _j - (cd3 - bvirt) + (_i - bvirt);
|
||||
cd[3] = cd3;
|
||||
s1 = dex * aey;
|
||||
c = splitter * dex;
|
||||
ahi = c - (c - dex);
|
||||
alo = dex - ahi;
|
||||
c = splitter * aey;
|
||||
bhi = c - (c - aey);
|
||||
blo = aey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = aex * dey;
|
||||
c = splitter * aex;
|
||||
ahi = c - (c - aex);
|
||||
alo = aex - ahi;
|
||||
c = splitter * dey;
|
||||
bhi = c - (c - dey);
|
||||
blo = dey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
da[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
da[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
da3 = _j + _i;
|
||||
bvirt = da3 - _j;
|
||||
da[2] = _j - (da3 - bvirt) + (_i - bvirt);
|
||||
da[3] = da3;
|
||||
s1 = aex * cey;
|
||||
c = splitter * aex;
|
||||
ahi = c - (c - aex);
|
||||
alo = aex - ahi;
|
||||
c = splitter * cey;
|
||||
bhi = c - (c - cey);
|
||||
blo = cey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cex * aey;
|
||||
c = splitter * cex;
|
||||
ahi = c - (c - cex);
|
||||
alo = cex - ahi;
|
||||
c = splitter * aey;
|
||||
bhi = c - (c - aey);
|
||||
blo = aey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ac[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ac[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
ac3 = _j + _i;
|
||||
bvirt = ac3 - _j;
|
||||
ac[2] = _j - (ac3 - bvirt) + (_i - bvirt);
|
||||
ac[3] = ac3;
|
||||
s1 = bex * dey;
|
||||
c = splitter * bex;
|
||||
ahi = c - (c - bex);
|
||||
alo = bex - ahi;
|
||||
c = splitter * dey;
|
||||
bhi = c - (c - dey);
|
||||
blo = dey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = dex * bey;
|
||||
c = splitter * dex;
|
||||
ahi = c - (c - dex);
|
||||
alo = dex - ahi;
|
||||
c = splitter * bey;
|
||||
bhi = c - (c - bey);
|
||||
blo = bey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
bd3 = _j + _i;
|
||||
bvirt = bd3 - _j;
|
||||
bd[2] = _j - (bd3 - bvirt) + (_i - bvirt);
|
||||
bd[3] = bd3;
|
||||
|
||||
const finlen = sum(
|
||||
sum(
|
||||
negate(liftadapt(bc, cd, bd, dez, bez, -cez, aex, aey, aez, adet), adet), adet,
|
||||
liftadapt(cd, da, ac, aez, cez, dez, bex, bey, bez, bdet), bdet, abdet), abdet,
|
||||
sum(
|
||||
negate(liftadapt(da, ab, bd, bez, dez, aez, cex, cey, cez, cdet), cdet), cdet,
|
||||
liftadapt(ab, bc, ac, cez, aez, -bez, dex, dey, dez, ddet), ddet, cddet), cddet, fin);
|
||||
|
||||
let det = estimate(finlen, fin);
|
||||
let errbound = isperrboundB * permanent;
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
bvirt = ax - aex;
|
||||
aextail = ax - (aex + bvirt) + (bvirt - ex);
|
||||
bvirt = ay - aey;
|
||||
aeytail = ay - (aey + bvirt) + (bvirt - ey);
|
||||
bvirt = az - aez;
|
||||
aeztail = az - (aez + bvirt) + (bvirt - ez);
|
||||
bvirt = bx - bex;
|
||||
bextail = bx - (bex + bvirt) + (bvirt - ex);
|
||||
bvirt = by - bey;
|
||||
beytail = by - (bey + bvirt) + (bvirt - ey);
|
||||
bvirt = bz - bez;
|
||||
beztail = bz - (bez + bvirt) + (bvirt - ez);
|
||||
bvirt = cx - cex;
|
||||
cextail = cx - (cex + bvirt) + (bvirt - ex);
|
||||
bvirt = cy - cey;
|
||||
ceytail = cy - (cey + bvirt) + (bvirt - ey);
|
||||
bvirt = cz - cez;
|
||||
ceztail = cz - (cez + bvirt) + (bvirt - ez);
|
||||
bvirt = dx - dex;
|
||||
dextail = dx - (dex + bvirt) + (bvirt - ex);
|
||||
bvirt = dy - dey;
|
||||
deytail = dy - (dey + bvirt) + (bvirt - ey);
|
||||
bvirt = dz - dez;
|
||||
deztail = dz - (dez + bvirt) + (bvirt - ez);
|
||||
if (aextail === 0 && aeytail === 0 && aeztail === 0 &&
|
||||
bextail === 0 && beytail === 0 && beztail === 0 &&
|
||||
cextail === 0 && ceytail === 0 && ceztail === 0 &&
|
||||
dextail === 0 && deytail === 0 && deztail === 0) {
|
||||
return det;
|
||||
}
|
||||
|
||||
errbound = isperrboundC * permanent + resulterrbound * Math.abs(det);
|
||||
|
||||
const abeps = (aex * beytail + bey * aextail) - (aey * bextail + bex * aeytail);
|
||||
const bceps = (bex * ceytail + cey * bextail) - (bey * cextail + cex * beytail);
|
||||
const cdeps = (cex * deytail + dey * cextail) - (cey * dextail + dex * ceytail);
|
||||
const daeps = (dex * aeytail + aey * dextail) - (dey * aextail + aex * deytail);
|
||||
const aceps = (aex * ceytail + cey * aextail) - (aey * cextail + cex * aeytail);
|
||||
const bdeps = (bex * deytail + dey * bextail) - (bey * dextail + dex * beytail);
|
||||
det +=
|
||||
(((bex * bex + bey * bey + bez * bez) * ((cez * daeps + dez * aceps + aez * cdeps) +
|
||||
(ceztail * da3 + deztail * ac3 + aeztail * cd3)) + (dex * dex + dey * dey + dez * dez) *
|
||||
((aez * bceps - bez * aceps + cez * abeps) + (aeztail * bc3 - beztail * ac3 + ceztail * ab3))) -
|
||||
((aex * aex + aey * aey + aez * aez) * ((bez * cdeps - cez * bdeps + dez * bceps) +
|
||||
(beztail * cd3 - ceztail * bd3 + deztail * bc3)) + (cex * cex + cey * cey + cez * cez) *
|
||||
((dez * abeps + aez * bdeps + bez * daeps) + (deztail * ab3 + aeztail * bd3 + beztail * da3)))) +
|
||||
2 * (((bex * bextail + bey * beytail + bez * beztail) * (cez * da3 + dez * ac3 + aez * cd3) +
|
||||
(dex * dextail + dey * deytail + dez * deztail) * (aez * bc3 - bez * ac3 + cez * ab3)) -
|
||||
((aex * aextail + aey * aeytail + aez * aeztail) * (bez * cd3 - cez * bd3 + dez * bc3) +
|
||||
(cex * cextail + cey * ceytail + cez * ceztail) * (dez * ab3 + aez * bd3 + bez * da3)));
|
||||
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
return insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez);
|
||||
}
|
||||
|
||||
export function insphere(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) {
|
||||
const aex = ax - ex;
|
||||
const bex = bx - ex;
|
||||
const cex = cx - ex;
|
||||
const dex = dx - ex;
|
||||
const aey = ay - ey;
|
||||
const bey = by - ey;
|
||||
const cey = cy - ey;
|
||||
const dey = dy - ey;
|
||||
const aez = az - ez;
|
||||
const bez = bz - ez;
|
||||
const cez = cz - ez;
|
||||
const dez = dz - ez;
|
||||
|
||||
const aexbey = aex * bey;
|
||||
const bexaey = bex * aey;
|
||||
const ab = aexbey - bexaey;
|
||||
const bexcey = bex * cey;
|
||||
const cexbey = cex * bey;
|
||||
const bc = bexcey - cexbey;
|
||||
const cexdey = cex * dey;
|
||||
const dexcey = dex * cey;
|
||||
const cd = cexdey - dexcey;
|
||||
const dexaey = dex * aey;
|
||||
const aexdey = aex * dey;
|
||||
const da = dexaey - aexdey;
|
||||
const aexcey = aex * cey;
|
||||
const cexaey = cex * aey;
|
||||
const ac = aexcey - cexaey;
|
||||
const bexdey = bex * dey;
|
||||
const dexbey = dex * bey;
|
||||
const bd = bexdey - dexbey;
|
||||
|
||||
const abc = aez * bc - bez * ac + cez * ab;
|
||||
const bcd = bez * cd - cez * bd + dez * bc;
|
||||
const cda = cez * da + dez * ac + aez * cd;
|
||||
const dab = dez * ab + aez * bd + bez * da;
|
||||
|
||||
const alift = aex * aex + aey * aey + aez * aez;
|
||||
const blift = bex * bex + bey * bey + bez * bez;
|
||||
const clift = cex * cex + cey * cey + cez * cez;
|
||||
const dlift = dex * dex + dey * dey + dez * dez;
|
||||
|
||||
const det = (clift * dab - dlift * abc) + (alift * bcd - blift * cda);
|
||||
|
||||
const aezplus = Math.abs(aez);
|
||||
const bezplus = Math.abs(bez);
|
||||
const cezplus = Math.abs(cez);
|
||||
const dezplus = Math.abs(dez);
|
||||
const aexbeyplus = Math.abs(aexbey);
|
||||
const bexaeyplus = Math.abs(bexaey);
|
||||
const bexceyplus = Math.abs(bexcey);
|
||||
const cexbeyplus = Math.abs(cexbey);
|
||||
const cexdeyplus = Math.abs(cexdey);
|
||||
const dexceyplus = Math.abs(dexcey);
|
||||
const dexaeyplus = Math.abs(dexaey);
|
||||
const aexdeyplus = Math.abs(aexdey);
|
||||
const aexceyplus = Math.abs(aexcey);
|
||||
const cexaeyplus = Math.abs(cexaey);
|
||||
const bexdeyplus = Math.abs(bexdey);
|
||||
const dexbeyplus = Math.abs(dexbey);
|
||||
const permanent =
|
||||
((cexdeyplus + dexceyplus) * bezplus + (dexbeyplus + bexdeyplus) * cezplus + (bexceyplus + cexbeyplus) * dezplus) * alift +
|
||||
((dexaeyplus + aexdeyplus) * cezplus + (aexceyplus + cexaeyplus) * dezplus + (cexdeyplus + dexceyplus) * aezplus) * blift +
|
||||
((aexbeyplus + bexaeyplus) * dezplus + (bexdeyplus + dexbeyplus) * aezplus + (dexaeyplus + aexdeyplus) * bezplus) * clift +
|
||||
((bexceyplus + cexbeyplus) * aezplus + (cexaeyplus + aexceyplus) * bezplus + (aexbeyplus + bexaeyplus) * cezplus) * dlift;
|
||||
|
||||
const errbound = isperrboundA * permanent;
|
||||
if (det > errbound || -det > errbound) {
|
||||
return det;
|
||||
}
|
||||
return -insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent);
|
||||
}
|
||||
|
||||
export function inspherefast(pax, pay, paz, pbx, pby, pbz, pcx, pcy, pcz, pdx, pdy, pdz, pex, pey, pez) {
|
||||
const aex = pax - pex;
|
||||
const bex = pbx - pex;
|
||||
const cex = pcx - pex;
|
||||
const dex = pdx - pex;
|
||||
const aey = pay - pey;
|
||||
const bey = pby - pey;
|
||||
const cey = pcy - pey;
|
||||
const dey = pdy - pey;
|
||||
const aez = paz - pez;
|
||||
const bez = pbz - pez;
|
||||
const cez = pcz - pez;
|
||||
const dez = pdz - pez;
|
||||
|
||||
const ab = aex * bey - bex * aey;
|
||||
const bc = bex * cey - cex * bey;
|
||||
const cd = cex * dey - dex * cey;
|
||||
const da = dex * aey - aex * dey;
|
||||
const ac = aex * cey - cex * aey;
|
||||
const bd = bex * dey - dex * bey;
|
||||
|
||||
const abc = aez * bc - bez * ac + cez * ab;
|
||||
const bcd = bez * cd - cez * bd + dez * bc;
|
||||
const cda = cez * da + dez * ac + aez * cd;
|
||||
const dab = dez * ab + aez * bd + bez * da;
|
||||
|
||||
const alift = aex * aex + aey * aey + aez * aez;
|
||||
const blift = bex * bex + bey * bey + bez * bez;
|
||||
const clift = cex * cex + cey * cey + cez * cez;
|
||||
const dlift = dex * dex + dey * dey + dez * dez;
|
||||
|
||||
return (clift * dab - dlift * abc) + (alift * bcd - blift * cda);
|
||||
}
|
||||
186
node_modules/robust-predicates/esm/orient2d.js
generated
vendored
Normal file
186
node_modules/robust-predicates/esm/orient2d.js
generated
vendored
Normal file
@@ -0,0 +1,186 @@
|
||||
import {epsilon, splitter, resulterrbound, estimate, vec, sum} from './util.js';
|
||||
|
||||
const ccwerrboundA = (3 + 16 * epsilon) * epsilon;
|
||||
const ccwerrboundB = (2 + 12 * epsilon) * epsilon;
|
||||
const ccwerrboundC = (9 + 64 * epsilon) * epsilon * epsilon;
|
||||
|
||||
const B = vec(4);
|
||||
const C1 = vec(8);
|
||||
const C2 = vec(12);
|
||||
const D = vec(16);
|
||||
const u = vec(4);
|
||||
|
||||
function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) {
|
||||
let acxtail, acytail, bcxtail, bcytail;
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
||||
|
||||
const acx = ax - cx;
|
||||
const bcx = bx - cx;
|
||||
const acy = ay - cy;
|
||||
const bcy = by - cy;
|
||||
|
||||
s1 = acx * bcy;
|
||||
c = splitter * acx;
|
||||
ahi = c - (c - acx);
|
||||
alo = acx - ahi;
|
||||
c = splitter * bcy;
|
||||
bhi = c - (c - bcy);
|
||||
blo = bcy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = acy * bcx;
|
||||
c = splitter * acy;
|
||||
ahi = c - (c - acy);
|
||||
alo = acy - ahi;
|
||||
c = splitter * bcx;
|
||||
bhi = c - (c - bcx);
|
||||
blo = bcx - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
B[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
B[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
B[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
B[3] = u3;
|
||||
|
||||
let det = estimate(4, B);
|
||||
let errbound = ccwerrboundB * detsum;
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
bvirt = ax - acx;
|
||||
acxtail = ax - (acx + bvirt) + (bvirt - cx);
|
||||
bvirt = bx - bcx;
|
||||
bcxtail = bx - (bcx + bvirt) + (bvirt - cx);
|
||||
bvirt = ay - acy;
|
||||
acytail = ay - (acy + bvirt) + (bvirt - cy);
|
||||
bvirt = by - bcy;
|
||||
bcytail = by - (bcy + bvirt) + (bvirt - cy);
|
||||
|
||||
if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) {
|
||||
return det;
|
||||
}
|
||||
|
||||
errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det);
|
||||
det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
|
||||
if (det >= errbound || -det >= errbound) return det;
|
||||
|
||||
s1 = acxtail * bcy;
|
||||
c = splitter * acxtail;
|
||||
ahi = c - (c - acxtail);
|
||||
alo = acxtail - ahi;
|
||||
c = splitter * bcy;
|
||||
bhi = c - (c - bcy);
|
||||
blo = bcy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = acytail * bcx;
|
||||
c = splitter * acytail;
|
||||
ahi = c - (c - acytail);
|
||||
alo = acytail - ahi;
|
||||
c = splitter * bcx;
|
||||
bhi = c - (c - bcx);
|
||||
blo = bcx - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
const C1len = sum(4, B, 4, u, C1);
|
||||
|
||||
s1 = acx * bcytail;
|
||||
c = splitter * acx;
|
||||
ahi = c - (c - acx);
|
||||
alo = acx - ahi;
|
||||
c = splitter * bcytail;
|
||||
bhi = c - (c - bcytail);
|
||||
blo = bcytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = acy * bcxtail;
|
||||
c = splitter * acy;
|
||||
ahi = c - (c - acy);
|
||||
alo = acy - ahi;
|
||||
c = splitter * bcxtail;
|
||||
bhi = c - (c - bcxtail);
|
||||
blo = bcxtail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
const C2len = sum(C1len, C1, 4, u, C2);
|
||||
|
||||
s1 = acxtail * bcytail;
|
||||
c = splitter * acxtail;
|
||||
ahi = c - (c - acxtail);
|
||||
alo = acxtail - ahi;
|
||||
c = splitter * bcytail;
|
||||
bhi = c - (c - bcytail);
|
||||
blo = bcytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = acytail * bcxtail;
|
||||
c = splitter * acytail;
|
||||
ahi = c - (c - acytail);
|
||||
alo = acytail - ahi;
|
||||
c = splitter * bcxtail;
|
||||
bhi = c - (c - bcxtail);
|
||||
blo = bcxtail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
const Dlen = sum(C2len, C2, 4, u, D);
|
||||
|
||||
return D[Dlen - 1];
|
||||
}
|
||||
|
||||
export function orient2d(ax, ay, bx, by, cx, cy) {
|
||||
const detleft = (ay - cy) * (bx - cx);
|
||||
const detright = (ax - cx) * (by - cy);
|
||||
const det = detleft - detright;
|
||||
|
||||
if (detleft === 0 || detright === 0 || (detleft > 0) !== (detright > 0)) return det;
|
||||
|
||||
const detsum = Math.abs(detleft + detright);
|
||||
if (Math.abs(det) >= ccwerrboundA * detsum) return det;
|
||||
|
||||
return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum);
|
||||
}
|
||||
|
||||
export function orient2dfast(ax, ay, bx, by, cx, cy) {
|
||||
return (ay - cy) * (bx - cx) - (ax - cx) * (by - cy);
|
||||
}
|
||||
462
node_modules/robust-predicates/esm/orient3d.js
generated
vendored
Normal file
462
node_modules/robust-predicates/esm/orient3d.js
generated
vendored
Normal file
@@ -0,0 +1,462 @@
|
||||
import {epsilon, splitter, resulterrbound, estimate, vec, sum, scale} from './util.js';
|
||||
|
||||
const o3derrboundA = (7 + 56 * epsilon) * epsilon;
|
||||
const o3derrboundB = (3 + 28 * epsilon) * epsilon;
|
||||
const o3derrboundC = (26 + 288 * epsilon) * epsilon * epsilon;
|
||||
|
||||
const bc = vec(4);
|
||||
const ca = vec(4);
|
||||
const ab = vec(4);
|
||||
const at_b = vec(4);
|
||||
const at_c = vec(4);
|
||||
const bt_c = vec(4);
|
||||
const bt_a = vec(4);
|
||||
const ct_a = vec(4);
|
||||
const ct_b = vec(4);
|
||||
const bct = vec(8);
|
||||
const cat = vec(8);
|
||||
const abt = vec(8);
|
||||
const u = vec(4);
|
||||
|
||||
const _8 = vec(8);
|
||||
const _8b = vec(8);
|
||||
const _16 = vec(8);
|
||||
const _12 = vec(12);
|
||||
|
||||
let fin = vec(192);
|
||||
let fin2 = vec(192);
|
||||
|
||||
function finadd(finlen, alen, a) {
|
||||
finlen = sum(finlen, fin, alen, a, fin2);
|
||||
const tmp = fin; fin = fin2; fin2 = tmp;
|
||||
return finlen;
|
||||
}
|
||||
|
||||
function tailinit(xtail, ytail, ax, ay, bx, by, a, b) {
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _k, _0, s1, s0, t1, t0, u3, negate;
|
||||
if (xtail === 0) {
|
||||
if (ytail === 0) {
|
||||
a[0] = 0;
|
||||
b[0] = 0;
|
||||
return 1;
|
||||
} else {
|
||||
negate = -ytail;
|
||||
s1 = negate * ax;
|
||||
c = splitter * negate;
|
||||
ahi = c - (c - negate);
|
||||
alo = negate - ahi;
|
||||
c = splitter * ax;
|
||||
bhi = c - (c - ax);
|
||||
blo = ax - bhi;
|
||||
a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
a[1] = s1;
|
||||
s1 = ytail * bx;
|
||||
c = splitter * ytail;
|
||||
ahi = c - (c - ytail);
|
||||
alo = ytail - ahi;
|
||||
c = splitter * bx;
|
||||
bhi = c - (c - bx);
|
||||
blo = bx - bhi;
|
||||
b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
b[1] = s1;
|
||||
return 2;
|
||||
}
|
||||
} else {
|
||||
if (ytail === 0) {
|
||||
s1 = xtail * ay;
|
||||
c = splitter * xtail;
|
||||
ahi = c - (c - xtail);
|
||||
alo = xtail - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
a[1] = s1;
|
||||
negate = -xtail;
|
||||
s1 = negate * by;
|
||||
c = splitter * negate;
|
||||
ahi = c - (c - negate);
|
||||
alo = negate - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
b[1] = s1;
|
||||
return 2;
|
||||
} else {
|
||||
s1 = xtail * ay;
|
||||
c = splitter * xtail;
|
||||
ahi = c - (c - xtail);
|
||||
alo = xtail - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ytail * ax;
|
||||
c = splitter * ytail;
|
||||
ahi = c - (c - ytail);
|
||||
alo = ytail - ahi;
|
||||
c = splitter * ax;
|
||||
bhi = c - (c - ax);
|
||||
blo = ax - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
a[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
a[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
a[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
a[3] = u3;
|
||||
s1 = ytail * bx;
|
||||
c = splitter * ytail;
|
||||
ahi = c - (c - ytail);
|
||||
alo = ytail - ahi;
|
||||
c = splitter * bx;
|
||||
bhi = c - (c - bx);
|
||||
blo = bx - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = xtail * by;
|
||||
c = splitter * xtail;
|
||||
ahi = c - (c - xtail);
|
||||
alo = xtail - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
b[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
b[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
b[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
b[3] = u3;
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function tailadd(finlen, a, b, k, z) {
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _k, _0, s1, s0, u3;
|
||||
s1 = a * b;
|
||||
c = splitter * a;
|
||||
ahi = c - (c - a);
|
||||
alo = a - ahi;
|
||||
c = splitter * b;
|
||||
bhi = c - (c - b);
|
||||
blo = b - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
c = splitter * k;
|
||||
bhi = c - (c - k);
|
||||
blo = k - bhi;
|
||||
_i = s0 * k;
|
||||
c = splitter * s0;
|
||||
ahi = c - (c - s0);
|
||||
alo = s0 - ahi;
|
||||
u[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_j = s1 * k;
|
||||
c = splitter * s1;
|
||||
ahi = c - (c - s1);
|
||||
alo = s1 - ahi;
|
||||
_0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_k = _i + _0;
|
||||
bvirt = _k - _i;
|
||||
u[1] = _i - (_k - bvirt) + (_0 - bvirt);
|
||||
u3 = _j + _k;
|
||||
u[2] = _k - (u3 - _j);
|
||||
u[3] = u3;
|
||||
finlen = finadd(finlen, 4, u);
|
||||
if (z !== 0) {
|
||||
c = splitter * z;
|
||||
bhi = c - (c - z);
|
||||
blo = z - bhi;
|
||||
_i = s0 * z;
|
||||
c = splitter * s0;
|
||||
ahi = c - (c - s0);
|
||||
alo = s0 - ahi;
|
||||
u[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_j = s1 * z;
|
||||
c = splitter * s1;
|
||||
ahi = c - (c - s1);
|
||||
alo = s1 - ahi;
|
||||
_0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_k = _i + _0;
|
||||
bvirt = _k - _i;
|
||||
u[1] = _i - (_k - bvirt) + (_0 - bvirt);
|
||||
u3 = _j + _k;
|
||||
u[2] = _k - (u3 - _j);
|
||||
u[3] = u3;
|
||||
finlen = finadd(finlen, 4, u);
|
||||
}
|
||||
return finlen;
|
||||
}
|
||||
|
||||
function orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent) {
|
||||
let finlen;
|
||||
let adxtail, bdxtail, cdxtail;
|
||||
let adytail, bdytail, cdytail;
|
||||
let adztail, bdztail, cdztail;
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _k, _0, s1, s0, t1, t0, u3;
|
||||
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
const adz = az - dz;
|
||||
const bdz = bz - dz;
|
||||
const cdz = cz - dz;
|
||||
|
||||
s1 = bdx * cdy;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdx * bdy;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bc[3] = u3;
|
||||
s1 = cdx * ady;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adx * cdy;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ca[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ca[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ca[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ca[3] = u3;
|
||||
s1 = adx * bdy;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdx * ady;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ab[3] = u3;
|
||||
|
||||
finlen = sum(
|
||||
sum(
|
||||
scale(4, bc, adz, _8), _8,
|
||||
scale(4, ca, bdz, _8b), _8b, _16), _16,
|
||||
scale(4, ab, cdz, _8), _8, fin);
|
||||
|
||||
let det = estimate(finlen, fin);
|
||||
let errbound = o3derrboundB * permanent;
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
bvirt = ax - adx;
|
||||
adxtail = ax - (adx + bvirt) + (bvirt - dx);
|
||||
bvirt = bx - bdx;
|
||||
bdxtail = bx - (bdx + bvirt) + (bvirt - dx);
|
||||
bvirt = cx - cdx;
|
||||
cdxtail = cx - (cdx + bvirt) + (bvirt - dx);
|
||||
bvirt = ay - ady;
|
||||
adytail = ay - (ady + bvirt) + (bvirt - dy);
|
||||
bvirt = by - bdy;
|
||||
bdytail = by - (bdy + bvirt) + (bvirt - dy);
|
||||
bvirt = cy - cdy;
|
||||
cdytail = cy - (cdy + bvirt) + (bvirt - dy);
|
||||
bvirt = az - adz;
|
||||
adztail = az - (adz + bvirt) + (bvirt - dz);
|
||||
bvirt = bz - bdz;
|
||||
bdztail = bz - (bdz + bvirt) + (bvirt - dz);
|
||||
bvirt = cz - cdz;
|
||||
cdztail = cz - (cdz + bvirt) + (bvirt - dz);
|
||||
|
||||
if (adxtail === 0 && bdxtail === 0 && cdxtail === 0 &&
|
||||
adytail === 0 && bdytail === 0 && cdytail === 0 &&
|
||||
adztail === 0 && bdztail === 0 && cdztail === 0) {
|
||||
return det;
|
||||
}
|
||||
|
||||
errbound = o3derrboundC * permanent + resulterrbound * Math.abs(det);
|
||||
det +=
|
||||
adz * (bdx * cdytail + cdy * bdxtail - (bdy * cdxtail + cdx * bdytail)) + adztail * (bdx * cdy - bdy * cdx) +
|
||||
bdz * (cdx * adytail + ady * cdxtail - (cdy * adxtail + adx * cdytail)) + bdztail * (cdx * ady - cdy * adx) +
|
||||
cdz * (adx * bdytail + bdy * adxtail - (ady * bdxtail + bdx * adytail)) + cdztail * (adx * bdy - ady * bdx);
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
const at_len = tailinit(adxtail, adytail, bdx, bdy, cdx, cdy, at_b, at_c);
|
||||
const bt_len = tailinit(bdxtail, bdytail, cdx, cdy, adx, ady, bt_c, bt_a);
|
||||
const ct_len = tailinit(cdxtail, cdytail, adx, ady, bdx, bdy, ct_a, ct_b);
|
||||
|
||||
const bctlen = sum(bt_len, bt_c, ct_len, ct_b, bct);
|
||||
finlen = finadd(finlen, scale(bctlen, bct, adz, _16), _16);
|
||||
|
||||
const catlen = sum(ct_len, ct_a, at_len, at_c, cat);
|
||||
finlen = finadd(finlen, scale(catlen, cat, bdz, _16), _16);
|
||||
|
||||
const abtlen = sum(at_len, at_b, bt_len, bt_a, abt);
|
||||
finlen = finadd(finlen, scale(abtlen, abt, cdz, _16), _16);
|
||||
|
||||
if (adztail !== 0) {
|
||||
finlen = finadd(finlen, scale(4, bc, adztail, _12), _12);
|
||||
finlen = finadd(finlen, scale(bctlen, bct, adztail, _16), _16);
|
||||
}
|
||||
if (bdztail !== 0) {
|
||||
finlen = finadd(finlen, scale(4, ca, bdztail, _12), _12);
|
||||
finlen = finadd(finlen, scale(catlen, cat, bdztail, _16), _16);
|
||||
}
|
||||
if (cdztail !== 0) {
|
||||
finlen = finadd(finlen, scale(4, ab, cdztail, _12), _12);
|
||||
finlen = finadd(finlen, scale(abtlen, abt, cdztail, _16), _16);
|
||||
}
|
||||
|
||||
if (adxtail !== 0) {
|
||||
if (bdytail !== 0) {
|
||||
finlen = tailadd(finlen, adxtail, bdytail, cdz, cdztail);
|
||||
}
|
||||
if (cdytail !== 0) {
|
||||
finlen = tailadd(finlen, -adxtail, cdytail, bdz, bdztail);
|
||||
}
|
||||
}
|
||||
if (bdxtail !== 0) {
|
||||
if (cdytail !== 0) {
|
||||
finlen = tailadd(finlen, bdxtail, cdytail, adz, adztail);
|
||||
}
|
||||
if (adytail !== 0) {
|
||||
finlen = tailadd(finlen, -bdxtail, adytail, cdz, cdztail);
|
||||
}
|
||||
}
|
||||
if (cdxtail !== 0) {
|
||||
if (adytail !== 0) {
|
||||
finlen = tailadd(finlen, cdxtail, adytail, bdz, bdztail);
|
||||
}
|
||||
if (bdytail !== 0) {
|
||||
finlen = tailadd(finlen, -cdxtail, bdytail, adz, adztail);
|
||||
}
|
||||
}
|
||||
|
||||
return fin[finlen - 1];
|
||||
}
|
||||
|
||||
export function orient3d(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
const adz = az - dz;
|
||||
const bdz = bz - dz;
|
||||
const cdz = cz - dz;
|
||||
|
||||
const bdxcdy = bdx * cdy;
|
||||
const cdxbdy = cdx * bdy;
|
||||
|
||||
const cdxady = cdx * ady;
|
||||
const adxcdy = adx * cdy;
|
||||
|
||||
const adxbdy = adx * bdy;
|
||||
const bdxady = bdx * ady;
|
||||
|
||||
const det =
|
||||
adz * (bdxcdy - cdxbdy) +
|
||||
bdz * (cdxady - adxcdy) +
|
||||
cdz * (adxbdy - bdxady);
|
||||
|
||||
const permanent =
|
||||
(Math.abs(bdxcdy) + Math.abs(cdxbdy)) * Math.abs(adz) +
|
||||
(Math.abs(cdxady) + Math.abs(adxcdy)) * Math.abs(bdz) +
|
||||
(Math.abs(adxbdy) + Math.abs(bdxady)) * Math.abs(cdz);
|
||||
|
||||
const errbound = o3derrboundA * permanent;
|
||||
if (det > errbound || -det > errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
return orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent);
|
||||
}
|
||||
|
||||
export function orient3dfast(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
const adz = az - dz;
|
||||
const bdz = bz - dz;
|
||||
const cdz = cz - dz;
|
||||
|
||||
return adx * (bdy * cdz - bdz * cdy) +
|
||||
bdx * (cdy * adz - cdz * ady) +
|
||||
cdx * (ady * bdz - adz * bdy);
|
||||
}
|
||||
138
node_modules/robust-predicates/esm/util.js
generated
vendored
Normal file
138
node_modules/robust-predicates/esm/util.js
generated
vendored
Normal file
@@ -0,0 +1,138 @@
|
||||
export const epsilon = 1.1102230246251565e-16;
|
||||
export const splitter = 134217729;
|
||||
export const resulterrbound = (3 + 8 * epsilon) * epsilon;
|
||||
|
||||
// fast_expansion_sum_zeroelim routine from oritinal code
|
||||
export function sum(elen, e, flen, f, h) {
|
||||
let Q, Qnew, hh, bvirt;
|
||||
let enow = e[0];
|
||||
let fnow = f[0];
|
||||
let eindex = 0;
|
||||
let findex = 0;
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Q = enow;
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Q = fnow;
|
||||
fnow = f[++findex];
|
||||
}
|
||||
let hindex = 0;
|
||||
if (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = enow + Q;
|
||||
hh = Q - (Qnew - enow);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = fnow + Q;
|
||||
hh = Q - (Qnew - fnow);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
while (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (eindex < elen) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
while (findex < flen) {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
if (Q !== 0 || hindex === 0) {
|
||||
h[hindex++] = Q;
|
||||
}
|
||||
return hindex;
|
||||
}
|
||||
|
||||
export function sum_three(alen, a, blen, b, clen, c, tmp, out) {
|
||||
return sum(sum(alen, a, blen, b, tmp), tmp, clen, c, out);
|
||||
}
|
||||
|
||||
// scale_expansion_zeroelim routine from oritinal code
|
||||
export function scale(elen, e, b, h) {
|
||||
let Q, sum, hh, product1, product0;
|
||||
let bvirt, c, ahi, alo, bhi, blo;
|
||||
|
||||
c = splitter * b;
|
||||
bhi = c - (c - b);
|
||||
blo = b - bhi;
|
||||
let enow = e[0];
|
||||
Q = enow * b;
|
||||
c = splitter * enow;
|
||||
ahi = c - (c - enow);
|
||||
alo = enow - ahi;
|
||||
hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo);
|
||||
let hindex = 0;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
for (let i = 1; i < elen; i++) {
|
||||
enow = e[i];
|
||||
product1 = enow * b;
|
||||
c = splitter * enow;
|
||||
ahi = c - (c - enow);
|
||||
alo = enow - ahi;
|
||||
product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
sum = Q + product0;
|
||||
bvirt = sum - Q;
|
||||
hh = Q - (sum - bvirt) + (product0 - bvirt);
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
Q = product1 + sum;
|
||||
hh = sum - (Q - product1);
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
if (Q !== 0 || hindex === 0) {
|
||||
h[hindex++] = Q;
|
||||
}
|
||||
return hindex;
|
||||
}
|
||||
|
||||
export function negate(elen, e) {
|
||||
for (let i = 0; i < elen; i++) e[i] = -e[i];
|
||||
return elen;
|
||||
}
|
||||
|
||||
export function estimate(elen, e) {
|
||||
let Q = e[0];
|
||||
for (let i = 1; i < elen; i++) Q += e[i];
|
||||
return Q;
|
||||
}
|
||||
|
||||
export function vec(n) {
|
||||
return new Float64Array(n);
|
||||
}
|
||||
49
node_modules/robust-predicates/index.d.ts
generated
vendored
Normal file
49
node_modules/robust-predicates/index.d.ts
generated
vendored
Normal file
@@ -0,0 +1,49 @@
|
||||
export as namespace predicates;
|
||||
|
||||
export function orient2d(
|
||||
ax: number, ay: number,
|
||||
bx: number, by: number,
|
||||
cx: number, cy: number): number;
|
||||
|
||||
export function orient2dfast(
|
||||
ax: number, ay: number,
|
||||
bx: number, by: number,
|
||||
cx: number, cy: number): number;
|
||||
|
||||
export function incircle(
|
||||
ax: number, ay: number,
|
||||
bx: number, by: number,
|
||||
cx: number, cy: number,
|
||||
dx: number, dy: number): number;
|
||||
|
||||
export function incirclefast(
|
||||
ax: number, ay: number,
|
||||
bx: number, by: number,
|
||||
cx: number, cy: number,
|
||||
dx: number, dy: number): number;
|
||||
|
||||
export function orient3d(
|
||||
ax: number, ay: number, az: number,
|
||||
bx: number, by: number, bz: number,
|
||||
cx: number, cy: number, cz: number,
|
||||
dx: number, dy: number, dz: number): number;
|
||||
|
||||
export function orient3dfast(
|
||||
ax: number, ay: number, az: number,
|
||||
bx: number, by: number, bz: number,
|
||||
cx: number, cy: number, cz: number,
|
||||
dx: number, dy: number, dz: number): number;
|
||||
|
||||
export function insphere(
|
||||
ax: number, ay: number, az: number,
|
||||
bx: number, by: number, bz: number,
|
||||
cx: number, cy: number, cz: number,
|
||||
dx: number, dy: number, dz: number,
|
||||
ex: number, ey: number, ez: number): number;
|
||||
|
||||
export function inspherefast(
|
||||
ax: number, ay: number, az: number,
|
||||
bx: number, by: number, bz: number,
|
||||
cx: number, cy: number, cz: number,
|
||||
dx: number, dy: number, dz: number,
|
||||
ex: number, ey: number, ez: number): number;
|
||||
5
node_modules/robust-predicates/index.js
generated
vendored
Normal file
5
node_modules/robust-predicates/index.js
generated
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
|
||||
export {orient2d, orient2dfast} from './esm/orient2d.js';
|
||||
export {orient3d, orient3dfast} from './esm/orient3d.js';
|
||||
export {incircle, incirclefast} from './esm/incircle.js';
|
||||
export {insphere, inspherefast} from './esm/insphere.js';
|
||||
77
node_modules/robust-predicates/package.json
generated
vendored
Normal file
77
node_modules/robust-predicates/package.json
generated
vendored
Normal file
@@ -0,0 +1,77 @@
|
||||
{
|
||||
"name": "robust-predicates",
|
||||
"version": "3.0.1",
|
||||
"description": "Fast robust predicates for computational geometry",
|
||||
"keywords": [
|
||||
"computational geometry",
|
||||
"robust arithmetic"
|
||||
],
|
||||
"author": "Vladimir Agafonkin",
|
||||
"license": "Unlicense",
|
||||
"type": "module",
|
||||
"main": "index.js",
|
||||
"unpkg": "umd/predicates.min.js",
|
||||
"module": "index.js",
|
||||
"exports": "./index.js",
|
||||
"types": "index.d.ts",
|
||||
"scripts": {
|
||||
"build": "mkdirp esm && node compile.js",
|
||||
"lint": "eslint *.js src test/test.js",
|
||||
"test": "npm run lint && npm run build && node test/test.js",
|
||||
"cov": "c8 node test/test.js",
|
||||
"bench": "node bench.js",
|
||||
"prepublishOnly": "npm run test && rollup -c"
|
||||
},
|
||||
"devDependencies": {
|
||||
"c8": "^7.7.0",
|
||||
"eslint": "^7.23.0",
|
||||
"eslint-config-mourner": "^3.0.0",
|
||||
"mkdirp": "^1.0.4",
|
||||
"nextafter": "^1.0.0",
|
||||
"robust-in-sphere": "^1.1.3",
|
||||
"robust-orientation": "^1.1.3",
|
||||
"rollup": "^2.44.0",
|
||||
"rollup-plugin-terser": "^7.0.2",
|
||||
"tape": "^5.2.2",
|
||||
"terser": "^5.6.1"
|
||||
},
|
||||
"files": [
|
||||
"index.js",
|
||||
"index.d.ts",
|
||||
"esm",
|
||||
"umd"
|
||||
],
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "https://github.com/mourner/robust-predicates.git"
|
||||
},
|
||||
"eslintConfig": {
|
||||
"extends": "mourner",
|
||||
"parserOptions": {
|
||||
"ecmaVersion": 2020
|
||||
},
|
||||
"rules": {
|
||||
"camelcase": 0,
|
||||
"new-cap": 0,
|
||||
"no-unused-vars": [
|
||||
2,
|
||||
{
|
||||
"varsIgnorePattern": "splitter|bvirt|c|[ab]hi|[ab]lo|_[ijk0]|u3|[st][01]"
|
||||
}
|
||||
],
|
||||
"no-lonely-if": 0
|
||||
},
|
||||
"globals": {
|
||||
"$Fast_Two_Sum": false,
|
||||
"$Two_Sum": false,
|
||||
"$Two_Diff_Tail": false,
|
||||
"$Split": false,
|
||||
"$Two_Product": false,
|
||||
"$Two_Product_Presplit": false,
|
||||
"$Two_One_Product": false,
|
||||
"$Cross_Product": false,
|
||||
"$Square_Sum": false,
|
||||
"$Two_Product_Sum": false
|
||||
}
|
||||
}
|
||||
}
|
||||
910
node_modules/robust-predicates/umd/incircle.js
generated
vendored
Normal file
910
node_modules/robust-predicates/umd/incircle.js
generated
vendored
Normal file
@@ -0,0 +1,910 @@
|
||||
(function (global, factory) {
|
||||
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
||||
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
||||
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
|
||||
}(this, (function (exports) { 'use strict';
|
||||
|
||||
const epsilon = 1.1102230246251565e-16;
|
||||
const splitter = 134217729;
|
||||
const resulterrbound = (3 + 8 * epsilon) * epsilon;
|
||||
|
||||
// fast_expansion_sum_zeroelim routine from oritinal code
|
||||
function sum(elen, e, flen, f, h) {
|
||||
let Q, Qnew, hh, bvirt;
|
||||
let enow = e[0];
|
||||
let fnow = f[0];
|
||||
let eindex = 0;
|
||||
let findex = 0;
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Q = enow;
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Q = fnow;
|
||||
fnow = f[++findex];
|
||||
}
|
||||
let hindex = 0;
|
||||
if (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = enow + Q;
|
||||
hh = Q - (Qnew - enow);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = fnow + Q;
|
||||
hh = Q - (Qnew - fnow);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
while (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (eindex < elen) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
while (findex < flen) {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
if (Q !== 0 || hindex === 0) {
|
||||
h[hindex++] = Q;
|
||||
}
|
||||
return hindex;
|
||||
}
|
||||
|
||||
function sum_three(alen, a, blen, b, clen, c, tmp, out) {
|
||||
return sum(sum(alen, a, blen, b, tmp), tmp, clen, c, out);
|
||||
}
|
||||
|
||||
// scale_expansion_zeroelim routine from oritinal code
|
||||
function scale(elen, e, b, h) {
|
||||
let Q, sum, hh, product1, product0;
|
||||
let bvirt, c, ahi, alo, bhi, blo;
|
||||
|
||||
c = splitter * b;
|
||||
bhi = c - (c - b);
|
||||
blo = b - bhi;
|
||||
let enow = e[0];
|
||||
Q = enow * b;
|
||||
c = splitter * enow;
|
||||
ahi = c - (c - enow);
|
||||
alo = enow - ahi;
|
||||
hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo);
|
||||
let hindex = 0;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
for (let i = 1; i < elen; i++) {
|
||||
enow = e[i];
|
||||
product1 = enow * b;
|
||||
c = splitter * enow;
|
||||
ahi = c - (c - enow);
|
||||
alo = enow - ahi;
|
||||
product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
sum = Q + product0;
|
||||
bvirt = sum - Q;
|
||||
hh = Q - (sum - bvirt) + (product0 - bvirt);
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
Q = product1 + sum;
|
||||
hh = sum - (Q - product1);
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
if (Q !== 0 || hindex === 0) {
|
||||
h[hindex++] = Q;
|
||||
}
|
||||
return hindex;
|
||||
}
|
||||
|
||||
function estimate(elen, e) {
|
||||
let Q = e[0];
|
||||
for (let i = 1; i < elen; i++) Q += e[i];
|
||||
return Q;
|
||||
}
|
||||
|
||||
function vec(n) {
|
||||
return new Float64Array(n);
|
||||
}
|
||||
|
||||
const iccerrboundA = (10 + 96 * epsilon) * epsilon;
|
||||
const iccerrboundB = (4 + 48 * epsilon) * epsilon;
|
||||
const iccerrboundC = (44 + 576 * epsilon) * epsilon * epsilon;
|
||||
|
||||
const bc = vec(4);
|
||||
const ca = vec(4);
|
||||
const ab = vec(4);
|
||||
const aa = vec(4);
|
||||
const bb = vec(4);
|
||||
const cc = vec(4);
|
||||
const u = vec(4);
|
||||
const v = vec(4);
|
||||
const axtbc = vec(8);
|
||||
const aytbc = vec(8);
|
||||
const bxtca = vec(8);
|
||||
const bytca = vec(8);
|
||||
const cxtab = vec(8);
|
||||
const cytab = vec(8);
|
||||
const abt = vec(8);
|
||||
const bct = vec(8);
|
||||
const cat = vec(8);
|
||||
const abtt = vec(4);
|
||||
const bctt = vec(4);
|
||||
const catt = vec(4);
|
||||
|
||||
const _8 = vec(8);
|
||||
const _16 = vec(16);
|
||||
const _16b = vec(16);
|
||||
const _16c = vec(16);
|
||||
const _32 = vec(32);
|
||||
const _32b = vec(32);
|
||||
const _48 = vec(48);
|
||||
const _64 = vec(64);
|
||||
|
||||
let fin = vec(1152);
|
||||
let fin2 = vec(1152);
|
||||
|
||||
function finadd(finlen, a, alen) {
|
||||
finlen = sum(finlen, fin, a, alen, fin2);
|
||||
const tmp = fin; fin = fin2; fin2 = tmp;
|
||||
return finlen;
|
||||
}
|
||||
|
||||
function incircleadapt(ax, ay, bx, by, cx, cy, dx, dy, permanent) {
|
||||
let finlen;
|
||||
let adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
|
||||
let axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
|
||||
let abtlen, bctlen, catlen;
|
||||
let abttlen, bcttlen, cattlen;
|
||||
let n1, n0;
|
||||
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
||||
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
|
||||
s1 = bdx * cdy;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdx * bdy;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bc[3] = u3;
|
||||
s1 = cdx * ady;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adx * cdy;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ca[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ca[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ca[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ca[3] = u3;
|
||||
s1 = adx * bdy;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdx * ady;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ab[3] = u3;
|
||||
|
||||
finlen = sum(
|
||||
sum(
|
||||
sum(
|
||||
scale(scale(4, bc, adx, _8), _8, adx, _16), _16,
|
||||
scale(scale(4, bc, ady, _8), _8, ady, _16b), _16b, _32), _32,
|
||||
sum(
|
||||
scale(scale(4, ca, bdx, _8), _8, bdx, _16), _16,
|
||||
scale(scale(4, ca, bdy, _8), _8, bdy, _16b), _16b, _32b), _32b, _64), _64,
|
||||
sum(
|
||||
scale(scale(4, ab, cdx, _8), _8, cdx, _16), _16,
|
||||
scale(scale(4, ab, cdy, _8), _8, cdy, _16b), _16b, _32), _32, fin);
|
||||
|
||||
let det = estimate(finlen, fin);
|
||||
let errbound = iccerrboundB * permanent;
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
bvirt = ax - adx;
|
||||
adxtail = ax - (adx + bvirt) + (bvirt - dx);
|
||||
bvirt = ay - ady;
|
||||
adytail = ay - (ady + bvirt) + (bvirt - dy);
|
||||
bvirt = bx - bdx;
|
||||
bdxtail = bx - (bdx + bvirt) + (bvirt - dx);
|
||||
bvirt = by - bdy;
|
||||
bdytail = by - (bdy + bvirt) + (bvirt - dy);
|
||||
bvirt = cx - cdx;
|
||||
cdxtail = cx - (cdx + bvirt) + (bvirt - dx);
|
||||
bvirt = cy - cdy;
|
||||
cdytail = cy - (cdy + bvirt) + (bvirt - dy);
|
||||
if (adxtail === 0 && bdxtail === 0 && cdxtail === 0 && adytail === 0 && bdytail === 0 && cdytail === 0) {
|
||||
return det;
|
||||
}
|
||||
|
||||
errbound = iccerrboundC * permanent + resulterrbound * Math.abs(det);
|
||||
det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail)) +
|
||||
2 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx)) +
|
||||
((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail)) +
|
||||
2 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) +
|
||||
((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail)) +
|
||||
2 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
|
||||
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
if (bdxtail !== 0 || bdytail !== 0 || cdxtail !== 0 || cdytail !== 0) {
|
||||
s1 = adx * adx;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
t1 = ady * ady;
|
||||
c = splitter * ady;
|
||||
ahi = c - (c - ady);
|
||||
alo = ady - ahi;
|
||||
t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
aa[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
aa[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
aa[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
aa[3] = u3;
|
||||
}
|
||||
if (cdxtail !== 0 || cdytail !== 0 || adxtail !== 0 || adytail !== 0) {
|
||||
s1 = bdx * bdx;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
t1 = bdy * bdy;
|
||||
c = splitter * bdy;
|
||||
ahi = c - (c - bdy);
|
||||
alo = bdy - ahi;
|
||||
t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
bb[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
bb[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bb[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bb[3] = u3;
|
||||
}
|
||||
if (adxtail !== 0 || adytail !== 0 || bdxtail !== 0 || bdytail !== 0) {
|
||||
s1 = cdx * cdx;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
t1 = cdy * cdy;
|
||||
c = splitter * cdy;
|
||||
ahi = c - (c - cdy);
|
||||
alo = cdy - ahi;
|
||||
t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
cc[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
cc[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
cc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
cc[3] = u3;
|
||||
}
|
||||
|
||||
if (adxtail !== 0) {
|
||||
axtbclen = scale(4, bc, adxtail, axtbc);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(axtbclen, axtbc, 2 * adx, _16), _16,
|
||||
scale(scale(4, cc, adxtail, _8), _8, bdy, _16b), _16b,
|
||||
scale(scale(4, bb, adxtail, _8), _8, -cdy, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (adytail !== 0) {
|
||||
aytbclen = scale(4, bc, adytail, aytbc);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(aytbclen, aytbc, 2 * ady, _16), _16,
|
||||
scale(scale(4, bb, adytail, _8), _8, cdx, _16b), _16b,
|
||||
scale(scale(4, cc, adytail, _8), _8, -bdx, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (bdxtail !== 0) {
|
||||
bxtcalen = scale(4, ca, bdxtail, bxtca);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(bxtcalen, bxtca, 2 * bdx, _16), _16,
|
||||
scale(scale(4, aa, bdxtail, _8), _8, cdy, _16b), _16b,
|
||||
scale(scale(4, cc, bdxtail, _8), _8, -ady, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (bdytail !== 0) {
|
||||
bytcalen = scale(4, ca, bdytail, bytca);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(bytcalen, bytca, 2 * bdy, _16), _16,
|
||||
scale(scale(4, cc, bdytail, _8), _8, adx, _16b), _16b,
|
||||
scale(scale(4, aa, bdytail, _8), _8, -cdx, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (cdxtail !== 0) {
|
||||
cxtablen = scale(4, ab, cdxtail, cxtab);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(cxtablen, cxtab, 2 * cdx, _16), _16,
|
||||
scale(scale(4, bb, cdxtail, _8), _8, ady, _16b), _16b,
|
||||
scale(scale(4, aa, cdxtail, _8), _8, -bdy, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
if (cdytail !== 0) {
|
||||
cytablen = scale(4, ab, cdytail, cytab);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(cytablen, cytab, 2 * cdy, _16), _16,
|
||||
scale(scale(4, aa, cdytail, _8), _8, bdx, _16b), _16b,
|
||||
scale(scale(4, bb, cdytail, _8), _8, -adx, _16c), _16c, _32, _48), _48);
|
||||
}
|
||||
|
||||
if (adxtail !== 0 || adytail !== 0) {
|
||||
if (bdxtail !== 0 || bdytail !== 0 || cdxtail !== 0 || cdytail !== 0) {
|
||||
s1 = bdxtail * cdy;
|
||||
c = splitter * bdxtail;
|
||||
ahi = c - (c - bdxtail);
|
||||
alo = bdxtail - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdx * cdytail;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * cdytail;
|
||||
bhi = c - (c - cdytail);
|
||||
blo = cdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
u[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
u[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
s1 = cdxtail * -bdy;
|
||||
c = splitter * cdxtail;
|
||||
ahi = c - (c - cdxtail);
|
||||
alo = cdxtail - ahi;
|
||||
c = splitter * -bdy;
|
||||
bhi = c - (c - -bdy);
|
||||
blo = -bdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdx * -bdytail;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * -bdytail;
|
||||
bhi = c - (c - -bdytail);
|
||||
blo = -bdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
v[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
v[3] = u3;
|
||||
bctlen = sum(4, u, 4, v, bct);
|
||||
s1 = bdxtail * cdytail;
|
||||
c = splitter * bdxtail;
|
||||
ahi = c - (c - bdxtail);
|
||||
alo = bdxtail - ahi;
|
||||
c = splitter * cdytail;
|
||||
bhi = c - (c - cdytail);
|
||||
blo = cdytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdxtail * bdytail;
|
||||
c = splitter * cdxtail;
|
||||
ahi = c - (c - cdxtail);
|
||||
alo = cdxtail - ahi;
|
||||
c = splitter * bdytail;
|
||||
bhi = c - (c - bdytail);
|
||||
blo = bdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bctt[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bctt[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bctt[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bctt[3] = u3;
|
||||
bcttlen = 4;
|
||||
} else {
|
||||
bct[0] = 0;
|
||||
bctlen = 1;
|
||||
bctt[0] = 0;
|
||||
bcttlen = 1;
|
||||
}
|
||||
if (adxtail !== 0) {
|
||||
const len = scale(bctlen, bct, adxtail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(axtbclen, axtbc, adxtail, _16), _16,
|
||||
scale(len, _16c, 2 * adx, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(bcttlen, bctt, adxtail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * adx, _16), _16,
|
||||
scale(len2, _8, adxtail, _16b), _16b,
|
||||
scale(len, _16c, adxtail, _32), _32, _32b, _64), _64);
|
||||
|
||||
if (bdytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, cc, adxtail, _8), _8, bdytail, _16), _16);
|
||||
}
|
||||
if (cdytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, bb, -adxtail, _8), _8, cdytail, _16), _16);
|
||||
}
|
||||
}
|
||||
if (adytail !== 0) {
|
||||
const len = scale(bctlen, bct, adytail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(aytbclen, aytbc, adytail, _16), _16,
|
||||
scale(len, _16c, 2 * ady, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(bcttlen, bctt, adytail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * ady, _16), _16,
|
||||
scale(len2, _8, adytail, _16b), _16b,
|
||||
scale(len, _16c, adytail, _32), _32, _32b, _64), _64);
|
||||
}
|
||||
}
|
||||
if (bdxtail !== 0 || bdytail !== 0) {
|
||||
if (cdxtail !== 0 || cdytail !== 0 || adxtail !== 0 || adytail !== 0) {
|
||||
s1 = cdxtail * ady;
|
||||
c = splitter * cdxtail;
|
||||
ahi = c - (c - cdxtail);
|
||||
alo = cdxtail - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdx * adytail;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * adytail;
|
||||
bhi = c - (c - adytail);
|
||||
blo = adytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
u[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
u[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
n1 = -cdy;
|
||||
n0 = -cdytail;
|
||||
s1 = adxtail * n1;
|
||||
c = splitter * adxtail;
|
||||
ahi = c - (c - adxtail);
|
||||
alo = adxtail - ahi;
|
||||
c = splitter * n1;
|
||||
bhi = c - (c - n1);
|
||||
blo = n1 - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adx * n0;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * n0;
|
||||
bhi = c - (c - n0);
|
||||
blo = n0 - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
v[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
v[3] = u3;
|
||||
catlen = sum(4, u, 4, v, cat);
|
||||
s1 = cdxtail * adytail;
|
||||
c = splitter * cdxtail;
|
||||
ahi = c - (c - cdxtail);
|
||||
alo = cdxtail - ahi;
|
||||
c = splitter * adytail;
|
||||
bhi = c - (c - adytail);
|
||||
blo = adytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adxtail * cdytail;
|
||||
c = splitter * adxtail;
|
||||
ahi = c - (c - adxtail);
|
||||
alo = adxtail - ahi;
|
||||
c = splitter * cdytail;
|
||||
bhi = c - (c - cdytail);
|
||||
blo = cdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
catt[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
catt[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
catt[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
catt[3] = u3;
|
||||
cattlen = 4;
|
||||
} else {
|
||||
cat[0] = 0;
|
||||
catlen = 1;
|
||||
catt[0] = 0;
|
||||
cattlen = 1;
|
||||
}
|
||||
if (bdxtail !== 0) {
|
||||
const len = scale(catlen, cat, bdxtail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(bxtcalen, bxtca, bdxtail, _16), _16,
|
||||
scale(len, _16c, 2 * bdx, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(cattlen, catt, bdxtail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * bdx, _16), _16,
|
||||
scale(len2, _8, bdxtail, _16b), _16b,
|
||||
scale(len, _16c, bdxtail, _32), _32, _32b, _64), _64);
|
||||
|
||||
if (cdytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, aa, bdxtail, _8), _8, cdytail, _16), _16);
|
||||
}
|
||||
if (adytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, cc, -bdxtail, _8), _8, adytail, _16), _16);
|
||||
}
|
||||
}
|
||||
if (bdytail !== 0) {
|
||||
const len = scale(catlen, cat, bdytail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(bytcalen, bytca, bdytail, _16), _16,
|
||||
scale(len, _16c, 2 * bdy, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(cattlen, catt, bdytail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * bdy, _16), _16,
|
||||
scale(len2, _8, bdytail, _16b), _16b,
|
||||
scale(len, _16c, bdytail, _32), _32, _32b, _64), _64);
|
||||
}
|
||||
}
|
||||
if (cdxtail !== 0 || cdytail !== 0) {
|
||||
if (adxtail !== 0 || adytail !== 0 || bdxtail !== 0 || bdytail !== 0) {
|
||||
s1 = adxtail * bdy;
|
||||
c = splitter * adxtail;
|
||||
ahi = c - (c - adxtail);
|
||||
alo = adxtail - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adx * bdytail;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * bdytail;
|
||||
bhi = c - (c - bdytail);
|
||||
blo = bdytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
u[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
u[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
n1 = -ady;
|
||||
n0 = -adytail;
|
||||
s1 = bdxtail * n1;
|
||||
c = splitter * bdxtail;
|
||||
ahi = c - (c - bdxtail);
|
||||
alo = bdxtail - ahi;
|
||||
c = splitter * n1;
|
||||
bhi = c - (c - n1);
|
||||
blo = n1 - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdx * n0;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * n0;
|
||||
bhi = c - (c - n0);
|
||||
blo = n0 - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 + t0;
|
||||
bvirt = _i - s0;
|
||||
v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 + t1;
|
||||
bvirt = _i - _0;
|
||||
v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
v[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
v[3] = u3;
|
||||
abtlen = sum(4, u, 4, v, abt);
|
||||
s1 = adxtail * bdytail;
|
||||
c = splitter * adxtail;
|
||||
ahi = c - (c - adxtail);
|
||||
alo = adxtail - ahi;
|
||||
c = splitter * bdytail;
|
||||
bhi = c - (c - bdytail);
|
||||
blo = bdytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdxtail * adytail;
|
||||
c = splitter * bdxtail;
|
||||
ahi = c - (c - bdxtail);
|
||||
alo = bdxtail - ahi;
|
||||
c = splitter * adytail;
|
||||
bhi = c - (c - adytail);
|
||||
blo = adytail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
abtt[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
abtt[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
abtt[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
abtt[3] = u3;
|
||||
abttlen = 4;
|
||||
} else {
|
||||
abt[0] = 0;
|
||||
abtlen = 1;
|
||||
abtt[0] = 0;
|
||||
abttlen = 1;
|
||||
}
|
||||
if (cdxtail !== 0) {
|
||||
const len = scale(abtlen, abt, cdxtail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(cxtablen, cxtab, cdxtail, _16), _16,
|
||||
scale(len, _16c, 2 * cdx, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(abttlen, abtt, cdxtail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * cdx, _16), _16,
|
||||
scale(len2, _8, cdxtail, _16b), _16b,
|
||||
scale(len, _16c, cdxtail, _32), _32, _32b, _64), _64);
|
||||
|
||||
if (adytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, bb, cdxtail, _8), _8, adytail, _16), _16);
|
||||
}
|
||||
if (bdytail !== 0) {
|
||||
finlen = finadd(finlen, scale(scale(4, aa, -cdxtail, _8), _8, bdytail, _16), _16);
|
||||
}
|
||||
}
|
||||
if (cdytail !== 0) {
|
||||
const len = scale(abtlen, abt, cdytail, _16c);
|
||||
finlen = finadd(finlen, sum(
|
||||
scale(cytablen, cytab, cdytail, _16), _16,
|
||||
scale(len, _16c, 2 * cdy, _32), _32, _48), _48);
|
||||
|
||||
const len2 = scale(abttlen, abtt, cdytail, _8);
|
||||
finlen = finadd(finlen, sum_three(
|
||||
scale(len2, _8, 2 * cdy, _16), _16,
|
||||
scale(len2, _8, cdytail, _16b), _16b,
|
||||
scale(len, _16c, cdytail, _32), _32, _32b, _64), _64);
|
||||
}
|
||||
}
|
||||
|
||||
return fin[finlen - 1];
|
||||
}
|
||||
|
||||
function incircle(ax, ay, bx, by, cx, cy, dx, dy) {
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
|
||||
const bdxcdy = bdx * cdy;
|
||||
const cdxbdy = cdx * bdy;
|
||||
const alift = adx * adx + ady * ady;
|
||||
|
||||
const cdxady = cdx * ady;
|
||||
const adxcdy = adx * cdy;
|
||||
const blift = bdx * bdx + bdy * bdy;
|
||||
|
||||
const adxbdy = adx * bdy;
|
||||
const bdxady = bdx * ady;
|
||||
const clift = cdx * cdx + cdy * cdy;
|
||||
|
||||
const det =
|
||||
alift * (bdxcdy - cdxbdy) +
|
||||
blift * (cdxady - adxcdy) +
|
||||
clift * (adxbdy - bdxady);
|
||||
|
||||
const permanent =
|
||||
(Math.abs(bdxcdy) + Math.abs(cdxbdy)) * alift +
|
||||
(Math.abs(cdxady) + Math.abs(adxcdy)) * blift +
|
||||
(Math.abs(adxbdy) + Math.abs(bdxady)) * clift;
|
||||
|
||||
const errbound = iccerrboundA * permanent;
|
||||
|
||||
if (det > errbound || -det > errbound) {
|
||||
return det;
|
||||
}
|
||||
return incircleadapt(ax, ay, bx, by, cx, cy, dx, dy, permanent);
|
||||
}
|
||||
|
||||
function incirclefast(ax, ay, bx, by, cx, cy, dx, dy) {
|
||||
const adx = ax - dx;
|
||||
const ady = ay - dy;
|
||||
const bdx = bx - dx;
|
||||
const bdy = by - dy;
|
||||
const cdx = cx - dx;
|
||||
const cdy = cy - dy;
|
||||
|
||||
const abdet = adx * bdy - bdx * ady;
|
||||
const bcdet = bdx * cdy - cdx * bdy;
|
||||
const cadet = cdx * ady - adx * cdy;
|
||||
const alift = adx * adx + ady * ady;
|
||||
const blift = bdx * bdx + bdy * bdy;
|
||||
const clift = cdx * cdx + cdy * cdy;
|
||||
|
||||
return alift * bcdet + blift * cadet + clift * abdet;
|
||||
}
|
||||
|
||||
exports.incircle = incircle;
|
||||
exports.incirclefast = incirclefast;
|
||||
|
||||
Object.defineProperty(exports, '__esModule', { value: true });
|
||||
|
||||
})));
|
||||
1
node_modules/robust-predicates/umd/incircle.min.js
generated
vendored
Normal file
1
node_modules/robust-predicates/umd/incircle.min.js
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
925
node_modules/robust-predicates/umd/insphere.js
generated
vendored
Normal file
925
node_modules/robust-predicates/umd/insphere.js
generated
vendored
Normal file
@@ -0,0 +1,925 @@
|
||||
(function (global, factory) {
|
||||
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
||||
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
||||
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
|
||||
}(this, (function (exports) { 'use strict';
|
||||
|
||||
const epsilon = 1.1102230246251565e-16;
|
||||
const splitter = 134217729;
|
||||
const resulterrbound = (3 + 8 * epsilon) * epsilon;
|
||||
|
||||
// fast_expansion_sum_zeroelim routine from oritinal code
|
||||
function sum(elen, e, flen, f, h) {
|
||||
let Q, Qnew, hh, bvirt;
|
||||
let enow = e[0];
|
||||
let fnow = f[0];
|
||||
let eindex = 0;
|
||||
let findex = 0;
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Q = enow;
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Q = fnow;
|
||||
fnow = f[++findex];
|
||||
}
|
||||
let hindex = 0;
|
||||
if (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = enow + Q;
|
||||
hh = Q - (Qnew - enow);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = fnow + Q;
|
||||
hh = Q - (Qnew - fnow);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
while (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (eindex < elen) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
while (findex < flen) {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
if (Q !== 0 || hindex === 0) {
|
||||
h[hindex++] = Q;
|
||||
}
|
||||
return hindex;
|
||||
}
|
||||
|
||||
function sum_three(alen, a, blen, b, clen, c, tmp, out) {
|
||||
return sum(sum(alen, a, blen, b, tmp), tmp, clen, c, out);
|
||||
}
|
||||
|
||||
// scale_expansion_zeroelim routine from oritinal code
|
||||
function scale(elen, e, b, h) {
|
||||
let Q, sum, hh, product1, product0;
|
||||
let bvirt, c, ahi, alo, bhi, blo;
|
||||
|
||||
c = splitter * b;
|
||||
bhi = c - (c - b);
|
||||
blo = b - bhi;
|
||||
let enow = e[0];
|
||||
Q = enow * b;
|
||||
c = splitter * enow;
|
||||
ahi = c - (c - enow);
|
||||
alo = enow - ahi;
|
||||
hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo);
|
||||
let hindex = 0;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
for (let i = 1; i < elen; i++) {
|
||||
enow = e[i];
|
||||
product1 = enow * b;
|
||||
c = splitter * enow;
|
||||
ahi = c - (c - enow);
|
||||
alo = enow - ahi;
|
||||
product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
sum = Q + product0;
|
||||
bvirt = sum - Q;
|
||||
hh = Q - (sum - bvirt) + (product0 - bvirt);
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
Q = product1 + sum;
|
||||
hh = sum - (Q - product1);
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
if (Q !== 0 || hindex === 0) {
|
||||
h[hindex++] = Q;
|
||||
}
|
||||
return hindex;
|
||||
}
|
||||
|
||||
function negate(elen, e) {
|
||||
for (let i = 0; i < elen; i++) e[i] = -e[i];
|
||||
return elen;
|
||||
}
|
||||
|
||||
function estimate(elen, e) {
|
||||
let Q = e[0];
|
||||
for (let i = 1; i < elen; i++) Q += e[i];
|
||||
return Q;
|
||||
}
|
||||
|
||||
function vec(n) {
|
||||
return new Float64Array(n);
|
||||
}
|
||||
|
||||
const isperrboundA = (16 + 224 * epsilon) * epsilon;
|
||||
const isperrboundB = (5 + 72 * epsilon) * epsilon;
|
||||
const isperrboundC = (71 + 1408 * epsilon) * epsilon * epsilon;
|
||||
|
||||
const ab = vec(4);
|
||||
const bc = vec(4);
|
||||
const cd = vec(4);
|
||||
const de = vec(4);
|
||||
const ea = vec(4);
|
||||
const ac = vec(4);
|
||||
const bd = vec(4);
|
||||
const ce = vec(4);
|
||||
const da = vec(4);
|
||||
const eb = vec(4);
|
||||
|
||||
const abc = vec(24);
|
||||
const bcd = vec(24);
|
||||
const cde = vec(24);
|
||||
const dea = vec(24);
|
||||
const eab = vec(24);
|
||||
const abd = vec(24);
|
||||
const bce = vec(24);
|
||||
const cda = vec(24);
|
||||
const deb = vec(24);
|
||||
const eac = vec(24);
|
||||
|
||||
const adet = vec(1152);
|
||||
const bdet = vec(1152);
|
||||
const cdet = vec(1152);
|
||||
const ddet = vec(1152);
|
||||
const edet = vec(1152);
|
||||
const abdet = vec(2304);
|
||||
const cddet = vec(2304);
|
||||
const cdedet = vec(3456);
|
||||
const deter = vec(5760);
|
||||
|
||||
const _8 = vec(8);
|
||||
const _8b = vec(8);
|
||||
const _8c = vec(8);
|
||||
const _16 = vec(16);
|
||||
const _24 = vec(24);
|
||||
const _48 = vec(48);
|
||||
const _48b = vec(48);
|
||||
const _96 = vec(96);
|
||||
const _192 = vec(192);
|
||||
const _384x = vec(384);
|
||||
const _384y = vec(384);
|
||||
const _384z = vec(384);
|
||||
const _768 = vec(768);
|
||||
|
||||
function sum_three_scale(a, b, c, az, bz, cz, out) {
|
||||
return sum_three(
|
||||
scale(4, a, az, _8), _8,
|
||||
scale(4, b, bz, _8b), _8b,
|
||||
scale(4, c, cz, _8c), _8c, _16, out);
|
||||
}
|
||||
|
||||
function liftexact(alen, a, blen, b, clen, c, dlen, d, x, y, z, out) {
|
||||
const len = sum(
|
||||
sum(alen, a, blen, b, _48), _48,
|
||||
negate(sum(clen, c, dlen, d, _48b), _48b), _48b, _96);
|
||||
|
||||
return sum_three(
|
||||
scale(scale(len, _96, x, _192), _192, x, _384x), _384x,
|
||||
scale(scale(len, _96, y, _192), _192, y, _384y), _384y,
|
||||
scale(scale(len, _96, z, _192), _192, z, _384z), _384z, _768, out);
|
||||
}
|
||||
|
||||
function insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) {
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
||||
|
||||
s1 = ax * by;
|
||||
c = splitter * ax;
|
||||
ahi = c - (c - ax);
|
||||
alo = ax - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bx * ay;
|
||||
c = splitter * bx;
|
||||
ahi = c - (c - bx);
|
||||
alo = bx - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ab[3] = u3;
|
||||
s1 = bx * cy;
|
||||
c = splitter * bx;
|
||||
ahi = c - (c - bx);
|
||||
alo = bx - ahi;
|
||||
c = splitter * cy;
|
||||
bhi = c - (c - cy);
|
||||
blo = cy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cx * by;
|
||||
c = splitter * cx;
|
||||
ahi = c - (c - cx);
|
||||
alo = cx - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bc[3] = u3;
|
||||
s1 = cx * dy;
|
||||
c = splitter * cx;
|
||||
ahi = c - (c - cx);
|
||||
alo = cx - ahi;
|
||||
c = splitter * dy;
|
||||
bhi = c - (c - dy);
|
||||
blo = dy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = dx * cy;
|
||||
c = splitter * dx;
|
||||
ahi = c - (c - dx);
|
||||
alo = dx - ahi;
|
||||
c = splitter * cy;
|
||||
bhi = c - (c - cy);
|
||||
blo = cy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
cd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
cd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
cd[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
cd[3] = u3;
|
||||
s1 = dx * ey;
|
||||
c = splitter * dx;
|
||||
ahi = c - (c - dx);
|
||||
alo = dx - ahi;
|
||||
c = splitter * ey;
|
||||
bhi = c - (c - ey);
|
||||
blo = ey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ex * dy;
|
||||
c = splitter * ex;
|
||||
ahi = c - (c - ex);
|
||||
alo = ex - ahi;
|
||||
c = splitter * dy;
|
||||
bhi = c - (c - dy);
|
||||
blo = dy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
de[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
de[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
de[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
de[3] = u3;
|
||||
s1 = ex * ay;
|
||||
c = splitter * ex;
|
||||
ahi = c - (c - ex);
|
||||
alo = ex - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ax * ey;
|
||||
c = splitter * ax;
|
||||
ahi = c - (c - ax);
|
||||
alo = ax - ahi;
|
||||
c = splitter * ey;
|
||||
bhi = c - (c - ey);
|
||||
blo = ey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ea[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ea[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ea[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ea[3] = u3;
|
||||
s1 = ax * cy;
|
||||
c = splitter * ax;
|
||||
ahi = c - (c - ax);
|
||||
alo = ax - ahi;
|
||||
c = splitter * cy;
|
||||
bhi = c - (c - cy);
|
||||
blo = cy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cx * ay;
|
||||
c = splitter * cx;
|
||||
ahi = c - (c - cx);
|
||||
alo = cx - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ac[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ac[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ac[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ac[3] = u3;
|
||||
s1 = bx * dy;
|
||||
c = splitter * bx;
|
||||
ahi = c - (c - bx);
|
||||
alo = bx - ahi;
|
||||
c = splitter * dy;
|
||||
bhi = c - (c - dy);
|
||||
blo = dy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = dx * by;
|
||||
c = splitter * dx;
|
||||
ahi = c - (c - dx);
|
||||
alo = dx - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bd[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bd[3] = u3;
|
||||
s1 = cx * ey;
|
||||
c = splitter * cx;
|
||||
ahi = c - (c - cx);
|
||||
alo = cx - ahi;
|
||||
c = splitter * ey;
|
||||
bhi = c - (c - ey);
|
||||
blo = ey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ex * cy;
|
||||
c = splitter * ex;
|
||||
ahi = c - (c - ex);
|
||||
alo = ex - ahi;
|
||||
c = splitter * cy;
|
||||
bhi = c - (c - cy);
|
||||
blo = cy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ce[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ce[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ce[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ce[3] = u3;
|
||||
s1 = dx * ay;
|
||||
c = splitter * dx;
|
||||
ahi = c - (c - dx);
|
||||
alo = dx - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ax * dy;
|
||||
c = splitter * ax;
|
||||
ahi = c - (c - ax);
|
||||
alo = ax - ahi;
|
||||
c = splitter * dy;
|
||||
bhi = c - (c - dy);
|
||||
blo = dy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
da[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
da[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
da[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
da[3] = u3;
|
||||
s1 = ex * by;
|
||||
c = splitter * ex;
|
||||
ahi = c - (c - ex);
|
||||
alo = ex - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bx * ey;
|
||||
c = splitter * bx;
|
||||
ahi = c - (c - bx);
|
||||
alo = bx - ahi;
|
||||
c = splitter * ey;
|
||||
bhi = c - (c - ey);
|
||||
blo = ey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
eb[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
eb[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
eb[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
eb[3] = u3;
|
||||
|
||||
const abclen = sum_three_scale(ab, bc, ac, cz, az, -bz, abc);
|
||||
const bcdlen = sum_three_scale(bc, cd, bd, dz, bz, -cz, bcd);
|
||||
const cdelen = sum_three_scale(cd, de, ce, ez, cz, -dz, cde);
|
||||
const dealen = sum_three_scale(de, ea, da, az, dz, -ez, dea);
|
||||
const eablen = sum_three_scale(ea, ab, eb, bz, ez, -az, eab);
|
||||
const abdlen = sum_three_scale(ab, bd, da, dz, az, bz, abd);
|
||||
const bcelen = sum_three_scale(bc, ce, eb, ez, bz, cz, bce);
|
||||
const cdalen = sum_three_scale(cd, da, ac, az, cz, dz, cda);
|
||||
const deblen = sum_three_scale(de, eb, bd, bz, dz, ez, deb);
|
||||
const eaclen = sum_three_scale(ea, ac, ce, cz, ez, az, eac);
|
||||
|
||||
const deterlen = sum_three(
|
||||
liftexact(cdelen, cde, bcelen, bce, deblen, deb, bcdlen, bcd, ax, ay, az, adet), adet,
|
||||
liftexact(dealen, dea, cdalen, cda, eaclen, eac, cdelen, cde, bx, by, bz, bdet), bdet,
|
||||
sum_three(
|
||||
liftexact(eablen, eab, deblen, deb, abdlen, abd, dealen, dea, cx, cy, cz, cdet), cdet,
|
||||
liftexact(abclen, abc, eaclen, eac, bcelen, bce, eablen, eab, dx, dy, dz, ddet), ddet,
|
||||
liftexact(bcdlen, bcd, abdlen, abd, cdalen, cda, abclen, abc, ex, ey, ez, edet), edet, cddet, cdedet), cdedet, abdet, deter);
|
||||
|
||||
return deter[deterlen - 1];
|
||||
}
|
||||
|
||||
const xdet = vec(96);
|
||||
const ydet = vec(96);
|
||||
const zdet = vec(96);
|
||||
const fin = vec(1152);
|
||||
|
||||
function liftadapt(a, b, c, az, bz, cz, x, y, z, out) {
|
||||
const len = sum_three_scale(a, b, c, az, bz, cz, _24);
|
||||
return sum_three(
|
||||
scale(scale(len, _24, x, _48), _48, x, xdet), xdet,
|
||||
scale(scale(len, _24, y, _48), _48, y, ydet), ydet,
|
||||
scale(scale(len, _24, z, _48), _48, z, zdet), zdet, _192, out);
|
||||
}
|
||||
|
||||
function insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent) {
|
||||
let ab3, bc3, cd3, da3, ac3, bd3;
|
||||
|
||||
let aextail, bextail, cextail, dextail;
|
||||
let aeytail, beytail, ceytail, deytail;
|
||||
let aeztail, beztail, ceztail, deztail;
|
||||
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0;
|
||||
|
||||
const aex = ax - ex;
|
||||
const bex = bx - ex;
|
||||
const cex = cx - ex;
|
||||
const dex = dx - ex;
|
||||
const aey = ay - ey;
|
||||
const bey = by - ey;
|
||||
const cey = cy - ey;
|
||||
const dey = dy - ey;
|
||||
const aez = az - ez;
|
||||
const bez = bz - ez;
|
||||
const cez = cz - ez;
|
||||
const dez = dz - ez;
|
||||
|
||||
s1 = aex * bey;
|
||||
c = splitter * aex;
|
||||
ahi = c - (c - aex);
|
||||
alo = aex - ahi;
|
||||
c = splitter * bey;
|
||||
bhi = c - (c - bey);
|
||||
blo = bey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bex * aey;
|
||||
c = splitter * bex;
|
||||
ahi = c - (c - bex);
|
||||
alo = bex - ahi;
|
||||
c = splitter * aey;
|
||||
bhi = c - (c - aey);
|
||||
blo = aey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
ab3 = _j + _i;
|
||||
bvirt = ab3 - _j;
|
||||
ab[2] = _j - (ab3 - bvirt) + (_i - bvirt);
|
||||
ab[3] = ab3;
|
||||
s1 = bex * cey;
|
||||
c = splitter * bex;
|
||||
ahi = c - (c - bex);
|
||||
alo = bex - ahi;
|
||||
c = splitter * cey;
|
||||
bhi = c - (c - cey);
|
||||
blo = cey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cex * bey;
|
||||
c = splitter * cex;
|
||||
ahi = c - (c - cex);
|
||||
alo = cex - ahi;
|
||||
c = splitter * bey;
|
||||
bhi = c - (c - bey);
|
||||
blo = bey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
bc3 = _j + _i;
|
||||
bvirt = bc3 - _j;
|
||||
bc[2] = _j - (bc3 - bvirt) + (_i - bvirt);
|
||||
bc[3] = bc3;
|
||||
s1 = cex * dey;
|
||||
c = splitter * cex;
|
||||
ahi = c - (c - cex);
|
||||
alo = cex - ahi;
|
||||
c = splitter * dey;
|
||||
bhi = c - (c - dey);
|
||||
blo = dey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = dex * cey;
|
||||
c = splitter * dex;
|
||||
ahi = c - (c - dex);
|
||||
alo = dex - ahi;
|
||||
c = splitter * cey;
|
||||
bhi = c - (c - cey);
|
||||
blo = cey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
cd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
cd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
cd3 = _j + _i;
|
||||
bvirt = cd3 - _j;
|
||||
cd[2] = _j - (cd3 - bvirt) + (_i - bvirt);
|
||||
cd[3] = cd3;
|
||||
s1 = dex * aey;
|
||||
c = splitter * dex;
|
||||
ahi = c - (c - dex);
|
||||
alo = dex - ahi;
|
||||
c = splitter * aey;
|
||||
bhi = c - (c - aey);
|
||||
blo = aey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = aex * dey;
|
||||
c = splitter * aex;
|
||||
ahi = c - (c - aex);
|
||||
alo = aex - ahi;
|
||||
c = splitter * dey;
|
||||
bhi = c - (c - dey);
|
||||
blo = dey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
da[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
da[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
da3 = _j + _i;
|
||||
bvirt = da3 - _j;
|
||||
da[2] = _j - (da3 - bvirt) + (_i - bvirt);
|
||||
da[3] = da3;
|
||||
s1 = aex * cey;
|
||||
c = splitter * aex;
|
||||
ahi = c - (c - aex);
|
||||
alo = aex - ahi;
|
||||
c = splitter * cey;
|
||||
bhi = c - (c - cey);
|
||||
blo = cey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cex * aey;
|
||||
c = splitter * cex;
|
||||
ahi = c - (c - cex);
|
||||
alo = cex - ahi;
|
||||
c = splitter * aey;
|
||||
bhi = c - (c - aey);
|
||||
blo = aey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ac[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ac[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
ac3 = _j + _i;
|
||||
bvirt = ac3 - _j;
|
||||
ac[2] = _j - (ac3 - bvirt) + (_i - bvirt);
|
||||
ac[3] = ac3;
|
||||
s1 = bex * dey;
|
||||
c = splitter * bex;
|
||||
ahi = c - (c - bex);
|
||||
alo = bex - ahi;
|
||||
c = splitter * dey;
|
||||
bhi = c - (c - dey);
|
||||
blo = dey - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = dex * bey;
|
||||
c = splitter * dex;
|
||||
ahi = c - (c - dex);
|
||||
alo = dex - ahi;
|
||||
c = splitter * bey;
|
||||
bhi = c - (c - bey);
|
||||
blo = bey - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
bd3 = _j + _i;
|
||||
bvirt = bd3 - _j;
|
||||
bd[2] = _j - (bd3 - bvirt) + (_i - bvirt);
|
||||
bd[3] = bd3;
|
||||
|
||||
const finlen = sum(
|
||||
sum(
|
||||
negate(liftadapt(bc, cd, bd, dez, bez, -cez, aex, aey, aez, adet), adet), adet,
|
||||
liftadapt(cd, da, ac, aez, cez, dez, bex, bey, bez, bdet), bdet, abdet), abdet,
|
||||
sum(
|
||||
negate(liftadapt(da, ab, bd, bez, dez, aez, cex, cey, cez, cdet), cdet), cdet,
|
||||
liftadapt(ab, bc, ac, cez, aez, -bez, dex, dey, dez, ddet), ddet, cddet), cddet, fin);
|
||||
|
||||
let det = estimate(finlen, fin);
|
||||
let errbound = isperrboundB * permanent;
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
bvirt = ax - aex;
|
||||
aextail = ax - (aex + bvirt) + (bvirt - ex);
|
||||
bvirt = ay - aey;
|
||||
aeytail = ay - (aey + bvirt) + (bvirt - ey);
|
||||
bvirt = az - aez;
|
||||
aeztail = az - (aez + bvirt) + (bvirt - ez);
|
||||
bvirt = bx - bex;
|
||||
bextail = bx - (bex + bvirt) + (bvirt - ex);
|
||||
bvirt = by - bey;
|
||||
beytail = by - (bey + bvirt) + (bvirt - ey);
|
||||
bvirt = bz - bez;
|
||||
beztail = bz - (bez + bvirt) + (bvirt - ez);
|
||||
bvirt = cx - cex;
|
||||
cextail = cx - (cex + bvirt) + (bvirt - ex);
|
||||
bvirt = cy - cey;
|
||||
ceytail = cy - (cey + bvirt) + (bvirt - ey);
|
||||
bvirt = cz - cez;
|
||||
ceztail = cz - (cez + bvirt) + (bvirt - ez);
|
||||
bvirt = dx - dex;
|
||||
dextail = dx - (dex + bvirt) + (bvirt - ex);
|
||||
bvirt = dy - dey;
|
||||
deytail = dy - (dey + bvirt) + (bvirt - ey);
|
||||
bvirt = dz - dez;
|
||||
deztail = dz - (dez + bvirt) + (bvirt - ez);
|
||||
if (aextail === 0 && aeytail === 0 && aeztail === 0 &&
|
||||
bextail === 0 && beytail === 0 && beztail === 0 &&
|
||||
cextail === 0 && ceytail === 0 && ceztail === 0 &&
|
||||
dextail === 0 && deytail === 0 && deztail === 0) {
|
||||
return det;
|
||||
}
|
||||
|
||||
errbound = isperrboundC * permanent + resulterrbound * Math.abs(det);
|
||||
|
||||
const abeps = (aex * beytail + bey * aextail) - (aey * bextail + bex * aeytail);
|
||||
const bceps = (bex * ceytail + cey * bextail) - (bey * cextail + cex * beytail);
|
||||
const cdeps = (cex * deytail + dey * cextail) - (cey * dextail + dex * ceytail);
|
||||
const daeps = (dex * aeytail + aey * dextail) - (dey * aextail + aex * deytail);
|
||||
const aceps = (aex * ceytail + cey * aextail) - (aey * cextail + cex * aeytail);
|
||||
const bdeps = (bex * deytail + dey * bextail) - (bey * dextail + dex * beytail);
|
||||
det +=
|
||||
(((bex * bex + bey * bey + bez * bez) * ((cez * daeps + dez * aceps + aez * cdeps) +
|
||||
(ceztail * da3 + deztail * ac3 + aeztail * cd3)) + (dex * dex + dey * dey + dez * dez) *
|
||||
((aez * bceps - bez * aceps + cez * abeps) + (aeztail * bc3 - beztail * ac3 + ceztail * ab3))) -
|
||||
((aex * aex + aey * aey + aez * aez) * ((bez * cdeps - cez * bdeps + dez * bceps) +
|
||||
(beztail * cd3 - ceztail * bd3 + deztail * bc3)) + (cex * cex + cey * cey + cez * cez) *
|
||||
((dez * abeps + aez * bdeps + bez * daeps) + (deztail * ab3 + aeztail * bd3 + beztail * da3)))) +
|
||||
2 * (((bex * bextail + bey * beytail + bez * beztail) * (cez * da3 + dez * ac3 + aez * cd3) +
|
||||
(dex * dextail + dey * deytail + dez * deztail) * (aez * bc3 - bez * ac3 + cez * ab3)) -
|
||||
((aex * aextail + aey * aeytail + aez * aeztail) * (bez * cd3 - cez * bd3 + dez * bc3) +
|
||||
(cex * cextail + cey * ceytail + cez * ceztail) * (dez * ab3 + aez * bd3 + bez * da3)));
|
||||
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
return insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez);
|
||||
}
|
||||
|
||||
function insphere(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) {
|
||||
const aex = ax - ex;
|
||||
const bex = bx - ex;
|
||||
const cex = cx - ex;
|
||||
const dex = dx - ex;
|
||||
const aey = ay - ey;
|
||||
const bey = by - ey;
|
||||
const cey = cy - ey;
|
||||
const dey = dy - ey;
|
||||
const aez = az - ez;
|
||||
const bez = bz - ez;
|
||||
const cez = cz - ez;
|
||||
const dez = dz - ez;
|
||||
|
||||
const aexbey = aex * bey;
|
||||
const bexaey = bex * aey;
|
||||
const ab = aexbey - bexaey;
|
||||
const bexcey = bex * cey;
|
||||
const cexbey = cex * bey;
|
||||
const bc = bexcey - cexbey;
|
||||
const cexdey = cex * dey;
|
||||
const dexcey = dex * cey;
|
||||
const cd = cexdey - dexcey;
|
||||
const dexaey = dex * aey;
|
||||
const aexdey = aex * dey;
|
||||
const da = dexaey - aexdey;
|
||||
const aexcey = aex * cey;
|
||||
const cexaey = cex * aey;
|
||||
const ac = aexcey - cexaey;
|
||||
const bexdey = bex * dey;
|
||||
const dexbey = dex * bey;
|
||||
const bd = bexdey - dexbey;
|
||||
|
||||
const abc = aez * bc - bez * ac + cez * ab;
|
||||
const bcd = bez * cd - cez * bd + dez * bc;
|
||||
const cda = cez * da + dez * ac + aez * cd;
|
||||
const dab = dez * ab + aez * bd + bez * da;
|
||||
|
||||
const alift = aex * aex + aey * aey + aez * aez;
|
||||
const blift = bex * bex + bey * bey + bez * bez;
|
||||
const clift = cex * cex + cey * cey + cez * cez;
|
||||
const dlift = dex * dex + dey * dey + dez * dez;
|
||||
|
||||
const det = (clift * dab - dlift * abc) + (alift * bcd - blift * cda);
|
||||
|
||||
const aezplus = Math.abs(aez);
|
||||
const bezplus = Math.abs(bez);
|
||||
const cezplus = Math.abs(cez);
|
||||
const dezplus = Math.abs(dez);
|
||||
const aexbeyplus = Math.abs(aexbey);
|
||||
const bexaeyplus = Math.abs(bexaey);
|
||||
const bexceyplus = Math.abs(bexcey);
|
||||
const cexbeyplus = Math.abs(cexbey);
|
||||
const cexdeyplus = Math.abs(cexdey);
|
||||
const dexceyplus = Math.abs(dexcey);
|
||||
const dexaeyplus = Math.abs(dexaey);
|
||||
const aexdeyplus = Math.abs(aexdey);
|
||||
const aexceyplus = Math.abs(aexcey);
|
||||
const cexaeyplus = Math.abs(cexaey);
|
||||
const bexdeyplus = Math.abs(bexdey);
|
||||
const dexbeyplus = Math.abs(dexbey);
|
||||
const permanent =
|
||||
((cexdeyplus + dexceyplus) * bezplus + (dexbeyplus + bexdeyplus) * cezplus + (bexceyplus + cexbeyplus) * dezplus) * alift +
|
||||
((dexaeyplus + aexdeyplus) * cezplus + (aexceyplus + cexaeyplus) * dezplus + (cexdeyplus + dexceyplus) * aezplus) * blift +
|
||||
((aexbeyplus + bexaeyplus) * dezplus + (bexdeyplus + dexbeyplus) * aezplus + (dexaeyplus + aexdeyplus) * bezplus) * clift +
|
||||
((bexceyplus + cexbeyplus) * aezplus + (cexaeyplus + aexceyplus) * bezplus + (aexbeyplus + bexaeyplus) * cezplus) * dlift;
|
||||
|
||||
const errbound = isperrboundA * permanent;
|
||||
if (det > errbound || -det > errbound) {
|
||||
return det;
|
||||
}
|
||||
return -insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent);
|
||||
}
|
||||
|
||||
function inspherefast(pax, pay, paz, pbx, pby, pbz, pcx, pcy, pcz, pdx, pdy, pdz, pex, pey, pez) {
|
||||
const aex = pax - pex;
|
||||
const bex = pbx - pex;
|
||||
const cex = pcx - pex;
|
||||
const dex = pdx - pex;
|
||||
const aey = pay - pey;
|
||||
const bey = pby - pey;
|
||||
const cey = pcy - pey;
|
||||
const dey = pdy - pey;
|
||||
const aez = paz - pez;
|
||||
const bez = pbz - pez;
|
||||
const cez = pcz - pez;
|
||||
const dez = pdz - pez;
|
||||
|
||||
const ab = aex * bey - bex * aey;
|
||||
const bc = bex * cey - cex * bey;
|
||||
const cd = cex * dey - dex * cey;
|
||||
const da = dex * aey - aex * dey;
|
||||
const ac = aex * cey - cex * aey;
|
||||
const bd = bex * dey - dex * bey;
|
||||
|
||||
const abc = aez * bc - bez * ac + cez * ab;
|
||||
const bcd = bez * cd - cez * bd + dez * bc;
|
||||
const cda = cez * da + dez * ac + aez * cd;
|
||||
const dab = dez * ab + aez * bd + bez * da;
|
||||
|
||||
const alift = aex * aex + aey * aey + aez * aez;
|
||||
const blift = bex * bex + bey * bey + bez * bez;
|
||||
const clift = cex * cex + cey * cey + cez * cez;
|
||||
const dlift = dex * dex + dey * dey + dez * dez;
|
||||
|
||||
return (clift * dab - dlift * abc) + (alift * bcd - blift * cda);
|
||||
}
|
||||
|
||||
exports.insphere = insphere;
|
||||
exports.inspherefast = inspherefast;
|
||||
|
||||
Object.defineProperty(exports, '__esModule', { value: true });
|
||||
|
||||
})));
|
||||
1
node_modules/robust-predicates/umd/insphere.min.js
generated
vendored
Normal file
1
node_modules/robust-predicates/umd/insphere.min.js
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
284
node_modules/robust-predicates/umd/orient2d.js
generated
vendored
Normal file
284
node_modules/robust-predicates/umd/orient2d.js
generated
vendored
Normal file
@@ -0,0 +1,284 @@
|
||||
(function (global, factory) {
|
||||
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
||||
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
||||
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
|
||||
}(this, (function (exports) { 'use strict';
|
||||
|
||||
const epsilon = 1.1102230246251565e-16;
|
||||
const splitter = 134217729;
|
||||
const resulterrbound = (3 + 8 * epsilon) * epsilon;
|
||||
|
||||
// fast_expansion_sum_zeroelim routine from oritinal code
|
||||
function sum(elen, e, flen, f, h) {
|
||||
let Q, Qnew, hh, bvirt;
|
||||
let enow = e[0];
|
||||
let fnow = f[0];
|
||||
let eindex = 0;
|
||||
let findex = 0;
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Q = enow;
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Q = fnow;
|
||||
fnow = f[++findex];
|
||||
}
|
||||
let hindex = 0;
|
||||
if (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = enow + Q;
|
||||
hh = Q - (Qnew - enow);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = fnow + Q;
|
||||
hh = Q - (Qnew - fnow);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
while (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (eindex < elen) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
while (findex < flen) {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
if (Q !== 0 || hindex === 0) {
|
||||
h[hindex++] = Q;
|
||||
}
|
||||
return hindex;
|
||||
}
|
||||
|
||||
function estimate(elen, e) {
|
||||
let Q = e[0];
|
||||
for (let i = 1; i < elen; i++) Q += e[i];
|
||||
return Q;
|
||||
}
|
||||
|
||||
function vec(n) {
|
||||
return new Float64Array(n);
|
||||
}
|
||||
|
||||
const ccwerrboundA = (3 + 16 * epsilon) * epsilon;
|
||||
const ccwerrboundB = (2 + 12 * epsilon) * epsilon;
|
||||
const ccwerrboundC = (9 + 64 * epsilon) * epsilon * epsilon;
|
||||
|
||||
const B = vec(4);
|
||||
const C1 = vec(8);
|
||||
const C2 = vec(12);
|
||||
const D = vec(16);
|
||||
const u = vec(4);
|
||||
|
||||
function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) {
|
||||
let acxtail, acytail, bcxtail, bcytail;
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
||||
|
||||
const acx = ax - cx;
|
||||
const bcx = bx - cx;
|
||||
const acy = ay - cy;
|
||||
const bcy = by - cy;
|
||||
|
||||
s1 = acx * bcy;
|
||||
c = splitter * acx;
|
||||
ahi = c - (c - acx);
|
||||
alo = acx - ahi;
|
||||
c = splitter * bcy;
|
||||
bhi = c - (c - bcy);
|
||||
blo = bcy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = acy * bcx;
|
||||
c = splitter * acy;
|
||||
ahi = c - (c - acy);
|
||||
alo = acy - ahi;
|
||||
c = splitter * bcx;
|
||||
bhi = c - (c - bcx);
|
||||
blo = bcx - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
B[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
B[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
B[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
B[3] = u3;
|
||||
|
||||
let det = estimate(4, B);
|
||||
let errbound = ccwerrboundB * detsum;
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
bvirt = ax - acx;
|
||||
acxtail = ax - (acx + bvirt) + (bvirt - cx);
|
||||
bvirt = bx - bcx;
|
||||
bcxtail = bx - (bcx + bvirt) + (bvirt - cx);
|
||||
bvirt = ay - acy;
|
||||
acytail = ay - (acy + bvirt) + (bvirt - cy);
|
||||
bvirt = by - bcy;
|
||||
bcytail = by - (bcy + bvirt) + (bvirt - cy);
|
||||
|
||||
if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) {
|
||||
return det;
|
||||
}
|
||||
|
||||
errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det);
|
||||
det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
|
||||
if (det >= errbound || -det >= errbound) return det;
|
||||
|
||||
s1 = acxtail * bcy;
|
||||
c = splitter * acxtail;
|
||||
ahi = c - (c - acxtail);
|
||||
alo = acxtail - ahi;
|
||||
c = splitter * bcy;
|
||||
bhi = c - (c - bcy);
|
||||
blo = bcy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = acytail * bcx;
|
||||
c = splitter * acytail;
|
||||
ahi = c - (c - acytail);
|
||||
alo = acytail - ahi;
|
||||
c = splitter * bcx;
|
||||
bhi = c - (c - bcx);
|
||||
blo = bcx - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
const C1len = sum(4, B, 4, u, C1);
|
||||
|
||||
s1 = acx * bcytail;
|
||||
c = splitter * acx;
|
||||
ahi = c - (c - acx);
|
||||
alo = acx - ahi;
|
||||
c = splitter * bcytail;
|
||||
bhi = c - (c - bcytail);
|
||||
blo = bcytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = acy * bcxtail;
|
||||
c = splitter * acy;
|
||||
ahi = c - (c - acy);
|
||||
alo = acy - ahi;
|
||||
c = splitter * bcxtail;
|
||||
bhi = c - (c - bcxtail);
|
||||
blo = bcxtail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
const C2len = sum(C1len, C1, 4, u, C2);
|
||||
|
||||
s1 = acxtail * bcytail;
|
||||
c = splitter * acxtail;
|
||||
ahi = c - (c - acxtail);
|
||||
alo = acxtail - ahi;
|
||||
c = splitter * bcytail;
|
||||
bhi = c - (c - bcytail);
|
||||
blo = bcytail - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = acytail * bcxtail;
|
||||
c = splitter * acytail;
|
||||
ahi = c - (c - acytail);
|
||||
alo = acytail - ahi;
|
||||
c = splitter * bcxtail;
|
||||
bhi = c - (c - bcxtail);
|
||||
blo = bcxtail - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
u[3] = u3;
|
||||
const Dlen = sum(C2len, C2, 4, u, D);
|
||||
|
||||
return D[Dlen - 1];
|
||||
}
|
||||
|
||||
function orient2d(ax, ay, bx, by, cx, cy) {
|
||||
const detleft = (ay - cy) * (bx - cx);
|
||||
const detright = (ax - cx) * (by - cy);
|
||||
const det = detleft - detright;
|
||||
|
||||
if (detleft === 0 || detright === 0 || (detleft > 0) !== (detright > 0)) return det;
|
||||
|
||||
const detsum = Math.abs(detleft + detright);
|
||||
if (Math.abs(det) >= ccwerrboundA * detsum) return det;
|
||||
|
||||
return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum);
|
||||
}
|
||||
|
||||
function orient2dfast(ax, ay, bx, by, cx, cy) {
|
||||
return (ay - cy) * (bx - cx) - (ax - cx) * (by - cy);
|
||||
}
|
||||
|
||||
exports.orient2d = orient2d;
|
||||
exports.orient2dfast = orient2dfast;
|
||||
|
||||
Object.defineProperty(exports, '__esModule', { value: true });
|
||||
|
||||
})));
|
||||
1
node_modules/robust-predicates/umd/orient2d.min.js
generated
vendored
Normal file
1
node_modules/robust-predicates/umd/orient2d.min.js
generated
vendored
Normal file
@@ -0,0 +1 @@
|
||||
!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?e(exports):"function"==typeof define&&define.amd?define(["exports"],e):e((t="undefined"!=typeof globalThis?globalThis:t||self).predicates={})}(this,(function(t){"use strict";const e=134217729;function n(t,e,n,o,r){let f,i,u,s,c=e[0],l=o[0],a=0,d=0;l>c==l>-c?(f=c,c=e[++a]):(f=l,l=o[++d]);let p=0;if(a<t&&d<n)for(l>c==l>-c?(i=c+f,u=f-(i-c),c=e[++a]):(i=l+f,u=f-(i-l),l=o[++d]),f=i,0!==u&&(r[p++]=u);a<t&&d<n;)l>c==l>-c?(i=f+c,s=i-f,u=f-(i-s)+(c-s),c=e[++a]):(i=f+l,s=i-f,u=f-(i-s)+(l-s),l=o[++d]),f=i,0!==u&&(r[p++]=u);for(;a<t;)i=f+c,s=i-f,u=f-(i-s)+(c-s),c=e[++a],f=i,0!==u&&(r[p++]=u);for(;d<n;)i=f+l,s=i-f,u=f-(i-s)+(l-s),l=o[++d],f=i,0!==u&&(r[p++]=u);return 0===f&&0!==p||(r[p++]=f),p}function o(t){return new Float64Array(t)}const r=o(4),f=o(8),i=o(12),u=o(16),s=o(4);t.orient2d=function(t,o,c,l,a,d){const p=(o-d)*(c-a),b=(t-a)*(l-d),h=p-b;if(0===p||0===b||p>0!=b>0)return h;const y=Math.abs(p+b);return Math.abs(h)>=33306690738754716e-32*y?h:-function(t,o,c,l,a,d,p){let b,h,y,M,x,g,j,m,T,_,v,w,A,F,O,P,k,q;const z=t-a,B=c-a,C=o-d,D=l-d;F=z*D,g=e*z,j=g-(g-z),m=z-j,g=e*D,T=g-(g-D),_=D-T,O=m*_-(F-j*T-m*T-j*_),P=C*B,g=e*C,j=g-(g-C),m=C-j,g=e*B,T=g-(g-B),_=B-T,k=m*_-(P-j*T-m*T-j*_),v=O-k,x=O-v,r[0]=O-(v+x)+(x-k),w=F+v,x=w-F,A=F-(w-x)+(v-x),v=A-P,x=A-v,r[1]=A-(v+x)+(x-P),q=w+v,x=q-w,r[2]=w-(q-x)+(v-x),r[3]=q;let E=function(t,e){let n=e[0];for(let o=1;o<t;o++)n+=e[o];return n}(4,r),G=22204460492503146e-32*p;if(E>=G||-E>=G)return E;if(x=t-z,b=t-(z+x)+(x-a),x=c-B,y=c-(B+x)+(x-a),x=o-C,h=o-(C+x)+(x-d),x=l-D,M=l-(D+x)+(x-d),0===b&&0===h&&0===y&&0===M)return E;if(G=11093356479670487e-47*p+33306690738754706e-32*Math.abs(E),E+=z*M+D*b-(C*y+B*h),E>=G||-E>=G)return E;F=b*D,g=e*b,j=g-(g-b),m=b-j,g=e*D,T=g-(g-D),_=D-T,O=m*_-(F-j*T-m*T-j*_),P=h*B,g=e*h,j=g-(g-h),m=h-j,g=e*B,T=g-(g-B),_=B-T,k=m*_-(P-j*T-m*T-j*_),v=O-k,x=O-v,s[0]=O-(v+x)+(x-k),w=F+v,x=w-F,A=F-(w-x)+(v-x),v=A-P,x=A-v,s[1]=A-(v+x)+(x-P),q=w+v,x=q-w,s[2]=w-(q-x)+(v-x),s[3]=q;const H=n(4,r,4,s,f);F=z*M,g=e*z,j=g-(g-z),m=z-j,g=e*M,T=g-(g-M),_=M-T,O=m*_-(F-j*T-m*T-j*_),P=C*y,g=e*C,j=g-(g-C),m=C-j,g=e*y,T=g-(g-y),_=y-T,k=m*_-(P-j*T-m*T-j*_),v=O-k,x=O-v,s[0]=O-(v+x)+(x-k),w=F+v,x=w-F,A=F-(w-x)+(v-x),v=A-P,x=A-v,s[1]=A-(v+x)+(x-P),q=w+v,x=q-w,s[2]=w-(q-x)+(v-x),s[3]=q;const I=n(H,f,4,s,i);F=b*M,g=e*b,j=g-(g-b),m=b-j,g=e*M,T=g-(g-M),_=M-T,O=m*_-(F-j*T-m*T-j*_),P=h*y,g=e*h,j=g-(g-h),m=h-j,g=e*y,T=g-(g-y),_=y-T,k=m*_-(P-j*T-m*T-j*_),v=O-k,x=O-v,s[0]=O-(v+x)+(x-k),w=F+v,x=w-F,A=F-(w-x)+(v-x),v=A-P,x=A-v,s[1]=A-(v+x)+(x-P),q=w+v,x=q-w,s[2]=w-(q-x)+(v-x),s[3]=q;const J=n(I,i,4,s,u);return u[J-1]}(t,o,c,l,a,d,y)},t.orient2dfast=function(t,e,n,o,r,f){return(e-f)*(n-r)-(t-r)*(o-f)},Object.defineProperty(t,"__esModule",{value:!0})}));
|
||||
603
node_modules/robust-predicates/umd/orient3d.js
generated
vendored
Normal file
603
node_modules/robust-predicates/umd/orient3d.js
generated
vendored
Normal file
@@ -0,0 +1,603 @@
|
||||
(function (global, factory) {
|
||||
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
||||
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
||||
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
|
||||
}(this, (function (exports) { 'use strict';
|
||||
|
||||
const epsilon = 1.1102230246251565e-16;
|
||||
const splitter = 134217729;
|
||||
const resulterrbound = (3 + 8 * epsilon) * epsilon;
|
||||
|
||||
// fast_expansion_sum_zeroelim routine from oritinal code
|
||||
function sum(elen, e, flen, f, h) {
|
||||
let Q, Qnew, hh, bvirt;
|
||||
let enow = e[0];
|
||||
let fnow = f[0];
|
||||
let eindex = 0;
|
||||
let findex = 0;
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Q = enow;
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Q = fnow;
|
||||
fnow = f[++findex];
|
||||
}
|
||||
let hindex = 0;
|
||||
if (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = enow + Q;
|
||||
hh = Q - (Qnew - enow);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = fnow + Q;
|
||||
hh = Q - (Qnew - fnow);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
while (eindex < elen && findex < flen) {
|
||||
if ((fnow > enow) === (fnow > -enow)) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
} else {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
}
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (eindex < elen) {
|
||||
Qnew = Q + enow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||||
enow = e[++eindex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
while (findex < flen) {
|
||||
Qnew = Q + fnow;
|
||||
bvirt = Qnew - Q;
|
||||
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||||
fnow = f[++findex];
|
||||
Q = Qnew;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
if (Q !== 0 || hindex === 0) {
|
||||
h[hindex++] = Q;
|
||||
}
|
||||
return hindex;
|
||||
}
|
||||
|
||||
// scale_expansion_zeroelim routine from oritinal code
|
||||
function scale(elen, e, b, h) {
|
||||
let Q, sum, hh, product1, product0;
|
||||
let bvirt, c, ahi, alo, bhi, blo;
|
||||
|
||||
c = splitter * b;
|
||||
bhi = c - (c - b);
|
||||
blo = b - bhi;
|
||||
let enow = e[0];
|
||||
Q = enow * b;
|
||||
c = splitter * enow;
|
||||
ahi = c - (c - enow);
|
||||
alo = enow - ahi;
|
||||
hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo);
|
||||
let hindex = 0;
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
for (let i = 1; i < elen; i++) {
|
||||
enow = e[i];
|
||||
product1 = enow * b;
|
||||
c = splitter * enow;
|
||||
ahi = c - (c - enow);
|
||||
alo = enow - ahi;
|
||||
product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
sum = Q + product0;
|
||||
bvirt = sum - Q;
|
||||
hh = Q - (sum - bvirt) + (product0 - bvirt);
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
Q = product1 + sum;
|
||||
hh = sum - (Q - product1);
|
||||
if (hh !== 0) {
|
||||
h[hindex++] = hh;
|
||||
}
|
||||
}
|
||||
if (Q !== 0 || hindex === 0) {
|
||||
h[hindex++] = Q;
|
||||
}
|
||||
return hindex;
|
||||
}
|
||||
|
||||
function estimate(elen, e) {
|
||||
let Q = e[0];
|
||||
for (let i = 1; i < elen; i++) Q += e[i];
|
||||
return Q;
|
||||
}
|
||||
|
||||
function vec(n) {
|
||||
return new Float64Array(n);
|
||||
}
|
||||
|
||||
const o3derrboundA = (7 + 56 * epsilon) * epsilon;
|
||||
const o3derrboundB = (3 + 28 * epsilon) * epsilon;
|
||||
const o3derrboundC = (26 + 288 * epsilon) * epsilon * epsilon;
|
||||
|
||||
const bc = vec(4);
|
||||
const ca = vec(4);
|
||||
const ab = vec(4);
|
||||
const at_b = vec(4);
|
||||
const at_c = vec(4);
|
||||
const bt_c = vec(4);
|
||||
const bt_a = vec(4);
|
||||
const ct_a = vec(4);
|
||||
const ct_b = vec(4);
|
||||
const bct = vec(8);
|
||||
const cat = vec(8);
|
||||
const abt = vec(8);
|
||||
const u = vec(4);
|
||||
|
||||
const _8 = vec(8);
|
||||
const _8b = vec(8);
|
||||
const _16 = vec(8);
|
||||
const _12 = vec(12);
|
||||
|
||||
let fin = vec(192);
|
||||
let fin2 = vec(192);
|
||||
|
||||
function finadd(finlen, alen, a) {
|
||||
finlen = sum(finlen, fin, alen, a, fin2);
|
||||
const tmp = fin; fin = fin2; fin2 = tmp;
|
||||
return finlen;
|
||||
}
|
||||
|
||||
function tailinit(xtail, ytail, ax, ay, bx, by, a, b) {
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3, negate;
|
||||
if (xtail === 0) {
|
||||
if (ytail === 0) {
|
||||
a[0] = 0;
|
||||
b[0] = 0;
|
||||
return 1;
|
||||
} else {
|
||||
negate = -ytail;
|
||||
s1 = negate * ax;
|
||||
c = splitter * negate;
|
||||
ahi = c - (c - negate);
|
||||
alo = negate - ahi;
|
||||
c = splitter * ax;
|
||||
bhi = c - (c - ax);
|
||||
blo = ax - bhi;
|
||||
a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
a[1] = s1;
|
||||
s1 = ytail * bx;
|
||||
c = splitter * ytail;
|
||||
ahi = c - (c - ytail);
|
||||
alo = ytail - ahi;
|
||||
c = splitter * bx;
|
||||
bhi = c - (c - bx);
|
||||
blo = bx - bhi;
|
||||
b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
b[1] = s1;
|
||||
return 2;
|
||||
}
|
||||
} else {
|
||||
if (ytail === 0) {
|
||||
s1 = xtail * ay;
|
||||
c = splitter * xtail;
|
||||
ahi = c - (c - xtail);
|
||||
alo = xtail - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
a[1] = s1;
|
||||
negate = -xtail;
|
||||
s1 = negate * by;
|
||||
c = splitter * negate;
|
||||
ahi = c - (c - negate);
|
||||
alo = negate - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
b[1] = s1;
|
||||
return 2;
|
||||
} else {
|
||||
s1 = xtail * ay;
|
||||
c = splitter * xtail;
|
||||
ahi = c - (c - xtail);
|
||||
alo = xtail - ahi;
|
||||
c = splitter * ay;
|
||||
bhi = c - (c - ay);
|
||||
blo = ay - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = ytail * ax;
|
||||
c = splitter * ytail;
|
||||
ahi = c - (c - ytail);
|
||||
alo = ytail - ahi;
|
||||
c = splitter * ax;
|
||||
bhi = c - (c - ax);
|
||||
blo = ax - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
a[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
a[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
a[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
a[3] = u3;
|
||||
s1 = ytail * bx;
|
||||
c = splitter * ytail;
|
||||
ahi = c - (c - ytail);
|
||||
alo = ytail - ahi;
|
||||
c = splitter * bx;
|
||||
bhi = c - (c - bx);
|
||||
blo = bx - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = xtail * by;
|
||||
c = splitter * xtail;
|
||||
ahi = c - (c - xtail);
|
||||
alo = xtail - ahi;
|
||||
c = splitter * by;
|
||||
bhi = c - (c - by);
|
||||
blo = by - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
b[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
b[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
b[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
b[3] = u3;
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function tailadd(finlen, a, b, k, z) {
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _k, _0, s1, s0, u3;
|
||||
s1 = a * b;
|
||||
c = splitter * a;
|
||||
ahi = c - (c - a);
|
||||
alo = a - ahi;
|
||||
c = splitter * b;
|
||||
bhi = c - (c - b);
|
||||
blo = b - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
c = splitter * k;
|
||||
bhi = c - (c - k);
|
||||
blo = k - bhi;
|
||||
_i = s0 * k;
|
||||
c = splitter * s0;
|
||||
ahi = c - (c - s0);
|
||||
alo = s0 - ahi;
|
||||
u[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_j = s1 * k;
|
||||
c = splitter * s1;
|
||||
ahi = c - (c - s1);
|
||||
alo = s1 - ahi;
|
||||
_0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_k = _i + _0;
|
||||
bvirt = _k - _i;
|
||||
u[1] = _i - (_k - bvirt) + (_0 - bvirt);
|
||||
u3 = _j + _k;
|
||||
u[2] = _k - (u3 - _j);
|
||||
u[3] = u3;
|
||||
finlen = finadd(finlen, 4, u);
|
||||
if (z !== 0) {
|
||||
c = splitter * z;
|
||||
bhi = c - (c - z);
|
||||
blo = z - bhi;
|
||||
_i = s0 * z;
|
||||
c = splitter * s0;
|
||||
ahi = c - (c - s0);
|
||||
alo = s0 - ahi;
|
||||
u[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_j = s1 * z;
|
||||
c = splitter * s1;
|
||||
ahi = c - (c - s1);
|
||||
alo = s1 - ahi;
|
||||
_0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_k = _i + _0;
|
||||
bvirt = _k - _i;
|
||||
u[1] = _i - (_k - bvirt) + (_0 - bvirt);
|
||||
u3 = _j + _k;
|
||||
u[2] = _k - (u3 - _j);
|
||||
u[3] = u3;
|
||||
finlen = finadd(finlen, 4, u);
|
||||
}
|
||||
return finlen;
|
||||
}
|
||||
|
||||
function orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent) {
|
||||
let finlen;
|
||||
let adxtail, bdxtail, cdxtail;
|
||||
let adytail, bdytail, cdytail;
|
||||
let adztail, bdztail, cdztail;
|
||||
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
||||
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
const adz = az - dz;
|
||||
const bdz = bz - dz;
|
||||
const cdz = cz - dz;
|
||||
|
||||
s1 = bdx * cdy;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = cdx * bdy;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
bc[3] = u3;
|
||||
s1 = cdx * ady;
|
||||
c = splitter * cdx;
|
||||
ahi = c - (c - cdx);
|
||||
alo = cdx - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = adx * cdy;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * cdy;
|
||||
bhi = c - (c - cdy);
|
||||
blo = cdy - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ca[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ca[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ca[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ca[3] = u3;
|
||||
s1 = adx * bdy;
|
||||
c = splitter * adx;
|
||||
ahi = c - (c - adx);
|
||||
alo = adx - ahi;
|
||||
c = splitter * bdy;
|
||||
bhi = c - (c - bdy);
|
||||
blo = bdy - bhi;
|
||||
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
t1 = bdx * ady;
|
||||
c = splitter * bdx;
|
||||
ahi = c - (c - bdx);
|
||||
alo = bdx - ahi;
|
||||
c = splitter * ady;
|
||||
bhi = c - (c - ady);
|
||||
blo = ady - bhi;
|
||||
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||||
_i = s0 - t0;
|
||||
bvirt = s0 - _i;
|
||||
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||||
_j = s1 + _i;
|
||||
bvirt = _j - s1;
|
||||
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||||
_i = _0 - t1;
|
||||
bvirt = _0 - _i;
|
||||
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||||
u3 = _j + _i;
|
||||
bvirt = u3 - _j;
|
||||
ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||||
ab[3] = u3;
|
||||
|
||||
finlen = sum(
|
||||
sum(
|
||||
scale(4, bc, adz, _8), _8,
|
||||
scale(4, ca, bdz, _8b), _8b, _16), _16,
|
||||
scale(4, ab, cdz, _8), _8, fin);
|
||||
|
||||
let det = estimate(finlen, fin);
|
||||
let errbound = o3derrboundB * permanent;
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
bvirt = ax - adx;
|
||||
adxtail = ax - (adx + bvirt) + (bvirt - dx);
|
||||
bvirt = bx - bdx;
|
||||
bdxtail = bx - (bdx + bvirt) + (bvirt - dx);
|
||||
bvirt = cx - cdx;
|
||||
cdxtail = cx - (cdx + bvirt) + (bvirt - dx);
|
||||
bvirt = ay - ady;
|
||||
adytail = ay - (ady + bvirt) + (bvirt - dy);
|
||||
bvirt = by - bdy;
|
||||
bdytail = by - (bdy + bvirt) + (bvirt - dy);
|
||||
bvirt = cy - cdy;
|
||||
cdytail = cy - (cdy + bvirt) + (bvirt - dy);
|
||||
bvirt = az - adz;
|
||||
adztail = az - (adz + bvirt) + (bvirt - dz);
|
||||
bvirt = bz - bdz;
|
||||
bdztail = bz - (bdz + bvirt) + (bvirt - dz);
|
||||
bvirt = cz - cdz;
|
||||
cdztail = cz - (cdz + bvirt) + (bvirt - dz);
|
||||
|
||||
if (adxtail === 0 && bdxtail === 0 && cdxtail === 0 &&
|
||||
adytail === 0 && bdytail === 0 && cdytail === 0 &&
|
||||
adztail === 0 && bdztail === 0 && cdztail === 0) {
|
||||
return det;
|
||||
}
|
||||
|
||||
errbound = o3derrboundC * permanent + resulterrbound * Math.abs(det);
|
||||
det +=
|
||||
adz * (bdx * cdytail + cdy * bdxtail - (bdy * cdxtail + cdx * bdytail)) + adztail * (bdx * cdy - bdy * cdx) +
|
||||
bdz * (cdx * adytail + ady * cdxtail - (cdy * adxtail + adx * cdytail)) + bdztail * (cdx * ady - cdy * adx) +
|
||||
cdz * (adx * bdytail + bdy * adxtail - (ady * bdxtail + bdx * adytail)) + cdztail * (adx * bdy - ady * bdx);
|
||||
if (det >= errbound || -det >= errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
const at_len = tailinit(adxtail, adytail, bdx, bdy, cdx, cdy, at_b, at_c);
|
||||
const bt_len = tailinit(bdxtail, bdytail, cdx, cdy, adx, ady, bt_c, bt_a);
|
||||
const ct_len = tailinit(cdxtail, cdytail, adx, ady, bdx, bdy, ct_a, ct_b);
|
||||
|
||||
const bctlen = sum(bt_len, bt_c, ct_len, ct_b, bct);
|
||||
finlen = finadd(finlen, scale(bctlen, bct, adz, _16), _16);
|
||||
|
||||
const catlen = sum(ct_len, ct_a, at_len, at_c, cat);
|
||||
finlen = finadd(finlen, scale(catlen, cat, bdz, _16), _16);
|
||||
|
||||
const abtlen = sum(at_len, at_b, bt_len, bt_a, abt);
|
||||
finlen = finadd(finlen, scale(abtlen, abt, cdz, _16), _16);
|
||||
|
||||
if (adztail !== 0) {
|
||||
finlen = finadd(finlen, scale(4, bc, adztail, _12), _12);
|
||||
finlen = finadd(finlen, scale(bctlen, bct, adztail, _16), _16);
|
||||
}
|
||||
if (bdztail !== 0) {
|
||||
finlen = finadd(finlen, scale(4, ca, bdztail, _12), _12);
|
||||
finlen = finadd(finlen, scale(catlen, cat, bdztail, _16), _16);
|
||||
}
|
||||
if (cdztail !== 0) {
|
||||
finlen = finadd(finlen, scale(4, ab, cdztail, _12), _12);
|
||||
finlen = finadd(finlen, scale(abtlen, abt, cdztail, _16), _16);
|
||||
}
|
||||
|
||||
if (adxtail !== 0) {
|
||||
if (bdytail !== 0) {
|
||||
finlen = tailadd(finlen, adxtail, bdytail, cdz, cdztail);
|
||||
}
|
||||
if (cdytail !== 0) {
|
||||
finlen = tailadd(finlen, -adxtail, cdytail, bdz, bdztail);
|
||||
}
|
||||
}
|
||||
if (bdxtail !== 0) {
|
||||
if (cdytail !== 0) {
|
||||
finlen = tailadd(finlen, bdxtail, cdytail, adz, adztail);
|
||||
}
|
||||
if (adytail !== 0) {
|
||||
finlen = tailadd(finlen, -bdxtail, adytail, cdz, cdztail);
|
||||
}
|
||||
}
|
||||
if (cdxtail !== 0) {
|
||||
if (adytail !== 0) {
|
||||
finlen = tailadd(finlen, cdxtail, adytail, bdz, bdztail);
|
||||
}
|
||||
if (bdytail !== 0) {
|
||||
finlen = tailadd(finlen, -cdxtail, bdytail, adz, adztail);
|
||||
}
|
||||
}
|
||||
|
||||
return fin[finlen - 1];
|
||||
}
|
||||
|
||||
function orient3d(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
const adz = az - dz;
|
||||
const bdz = bz - dz;
|
||||
const cdz = cz - dz;
|
||||
|
||||
const bdxcdy = bdx * cdy;
|
||||
const cdxbdy = cdx * bdy;
|
||||
|
||||
const cdxady = cdx * ady;
|
||||
const adxcdy = adx * cdy;
|
||||
|
||||
const adxbdy = adx * bdy;
|
||||
const bdxady = bdx * ady;
|
||||
|
||||
const det =
|
||||
adz * (bdxcdy - cdxbdy) +
|
||||
bdz * (cdxady - adxcdy) +
|
||||
cdz * (adxbdy - bdxady);
|
||||
|
||||
const permanent =
|
||||
(Math.abs(bdxcdy) + Math.abs(cdxbdy)) * Math.abs(adz) +
|
||||
(Math.abs(cdxady) + Math.abs(adxcdy)) * Math.abs(bdz) +
|
||||
(Math.abs(adxbdy) + Math.abs(bdxady)) * Math.abs(cdz);
|
||||
|
||||
const errbound = o3derrboundA * permanent;
|
||||
if (det > errbound || -det > errbound) {
|
||||
return det;
|
||||
}
|
||||
|
||||
return orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent);
|
||||
}
|
||||
|
||||
function orient3dfast(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
|
||||
const adx = ax - dx;
|
||||
const bdx = bx - dx;
|
||||
const cdx = cx - dx;
|
||||
const ady = ay - dy;
|
||||
const bdy = by - dy;
|
||||
const cdy = cy - dy;
|
||||
const adz = az - dz;
|
||||
const bdz = bz - dz;
|
||||
const cdz = cz - dz;
|
||||
|
||||
return adx * (bdy * cdz - bdz * cdy) +
|
||||
bdx * (cdy * adz - cdz * ady) +
|
||||
cdx * (ady * bdz - adz * bdy);
|
||||
}
|
||||
|
||||
exports.orient3d = orient3d;
|
||||
exports.orient3dfast = orient3dfast;
|
||||
|
||||
Object.defineProperty(exports, '__esModule', { value: true });
|
||||
|
||||
})));
|
||||
1
node_modules/robust-predicates/umd/orient3d.min.js
generated
vendored
Normal file
1
node_modules/robust-predicates/umd/orient3d.min.js
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
2341
node_modules/robust-predicates/umd/predicates.js
generated
vendored
Normal file
2341
node_modules/robust-predicates/umd/predicates.js
generated
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1
node_modules/robust-predicates/umd/predicates.min.js
generated
vendored
Normal file
1
node_modules/robust-predicates/umd/predicates.min.js
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user