config redirect

This commit is contained in:
Nuno Coração
2023-01-29 22:30:24 +00:00
parent 17557c7d73
commit 5fb4bd8083
9905 changed files with 1258996 additions and 36355 deletions

2
node_modules/dagre-d3-es/src/dagre-js/arrows.d.ts generated vendored Normal file
View File

@@ -0,0 +1,2 @@
export var arrows: any;
export function setArrows(value: any): any;

82
node_modules/dagre-d3-es/src/dagre-js/arrows.js generated vendored Normal file
View File

@@ -0,0 +1,82 @@
import * as util from './util.js';
export { arrows, setArrows };
var arrows = {
normal,
vee,
undirected,
};
function setArrows(value) {
arrows = value;
}
function normal(parent, id, edge, type) {
var marker = parent
.append('marker')
.attr('id', id)
.attr('viewBox', '0 0 10 10')
.attr('refX', 9)
.attr('refY', 5)
.attr('markerUnits', 'strokeWidth')
.attr('markerWidth', 8)
.attr('markerHeight', 6)
.attr('orient', 'auto');
var path = marker
.append('path')
.attr('d', 'M 0 0 L 10 5 L 0 10 z')
.style('stroke-width', 1)
.style('stroke-dasharray', '1,0');
util.applyStyle(path, edge[type + 'Style']);
if (edge[type + 'Class']) {
path.attr('class', edge[type + 'Class']);
}
}
function vee(parent, id, edge, type) {
var marker = parent
.append('marker')
.attr('id', id)
.attr('viewBox', '0 0 10 10')
.attr('refX', 9)
.attr('refY', 5)
.attr('markerUnits', 'strokeWidth')
.attr('markerWidth', 8)
.attr('markerHeight', 6)
.attr('orient', 'auto');
var path = marker
.append('path')
.attr('d', 'M 0 0 L 10 5 L 0 10 L 4 5 z')
.style('stroke-width', 1)
.style('stroke-dasharray', '1,0');
util.applyStyle(path, edge[type + 'Style']);
if (edge[type + 'Class']) {
path.attr('class', edge[type + 'Class']);
}
}
function undirected(parent, id, edge, type) {
var marker = parent
.append('marker')
.attr('id', id)
.attr('viewBox', '0 0 10 10')
.attr('refX', 9)
.attr('refY', 5)
.attr('markerUnits', 'strokeWidth')
.attr('markerWidth', 8)
.attr('markerHeight', 6)
.attr('orient', 'auto');
var path = marker
.append('path')
.attr('d', 'M 0 5 L 10 5')
.style('stroke-width', 1)
.style('stroke-dasharray', '1,0');
util.applyStyle(path, edge[type + 'Style']);
if (edge[type + 'Class']) {
path.attr('class', edge[type + 'Class']);
}
}

View File

@@ -0,0 +1,2 @@
export function createClusters(selection: any, g: any): any;
export function setCreateClusters(value: any): any;

View File

@@ -0,0 +1,49 @@
import * as d3 from 'd3';
import { addLabel } from './label/add-label.js';
import * as util from './util.js';
export { createClusters, setCreateClusters };
var createClusters = function (selection, g) {
var clusters = g.nodes().filter(function (v) {
return util.isSubgraph(g, v);
});
var svgClusters = selection.selectAll('g.cluster').data(clusters, function (v) {
return v;
});
util.applyTransition(svgClusters.exit(), g).style('opacity', 0).remove();
var enterSelection = svgClusters
.enter()
.append('g')
.attr('class', 'cluster')
.attr('id', function (v) {
var node = g.node(v);
return node.id;
})
.style('opacity', 0)
.each(function (v) {
var node = g.node(v);
var thisGroup = d3.select(this);
d3.select(this).append('rect');
var labelGroup = thisGroup.append('g').attr('class', 'label');
addLabel(labelGroup, node, node.clusterLabelPos);
});
svgClusters = svgClusters.merge(enterSelection);
svgClusters = util.applyTransition(svgClusters, g).style('opacity', 1);
svgClusters.selectAll('rect').each(function (c) {
var node = g.node(c);
var domCluster = d3.select(this);
util.applyStyle(domCluster, node.style);
});
return svgClusters;
};
function setCreateClusters(value) {
createClusters = value;
}

View File

@@ -0,0 +1,2 @@
export function createEdgeLabels(selection: any, g: any): any;
export function setCreateEdgeLabels(value: any): any;

View File

@@ -0,0 +1,54 @@
import * as d3 from 'd3';
import * as _ from 'lodash-es';
import { addLabel } from './label/add-label.js';
import * as util from './util.js';
export { createEdgeLabels, setCreateEdgeLabels };
let createEdgeLabels = function (selection, g) {
var svgEdgeLabels = selection
.selectAll('g.edgeLabel')
.data(g.edges(), function (e) {
return util.edgeToId(e);
})
.classed('update', true);
svgEdgeLabels.exit().remove();
svgEdgeLabels.enter().append('g').classed('edgeLabel', true).style('opacity', 0);
svgEdgeLabels = selection.selectAll('g.edgeLabel');
svgEdgeLabels.each(function (e) {
var root = d3.select(this);
root.select('.label').remove();
var edge = g.edge(e);
var label = addLabel(root, g.edge(e), 0, 0).classed('label', true);
var bbox = label.node().getBBox();
if (edge.labelId) {
label.attr('id', edge.labelId);
}
if (!_.has(edge, 'width')) {
edge.width = bbox.width;
}
if (!_.has(edge, 'height')) {
edge.height = bbox.height;
}
});
var exitSelection;
if (svgEdgeLabels.exit) {
exitSelection = svgEdgeLabels.exit();
} else {
exitSelection = svgEdgeLabels.selectAll(null); // empty selection
}
util.applyTransition(exitSelection, g).style('opacity', 0).remove();
return svgEdgeLabels;
};
function setCreateEdgeLabels(value) {
createEdgeLabels = value;
}

View File

@@ -0,0 +1,2 @@
export function createEdgePaths(selection: any, g: any, arrows: any): any;
export function setCreateEdgePaths(value: any): any;

View File

@@ -0,0 +1,131 @@
import * as d3 from 'd3';
import * as _ from 'lodash-es';
import { intersectNode } from './intersect/intersect-node.js';
import * as util from './util.js';
export { createEdgePaths, setCreateEdgePaths };
var createEdgePaths = function (selection, g, arrows) {
var previousPaths = selection
.selectAll('g.edgePath')
.data(g.edges(), function (e) {
return util.edgeToId(e);
})
.classed('update', true);
var newPaths = enter(previousPaths, g);
exit(previousPaths, g);
var svgPaths = previousPaths.merge !== undefined ? previousPaths.merge(newPaths) : previousPaths;
util.applyTransition(svgPaths, g).style('opacity', 1);
// Save DOM element in the path group, and set ID and class
svgPaths.each(function (e) {
var domEdge = d3.select(this);
var edge = g.edge(e);
edge.elem = this;
if (edge.id) {
domEdge.attr('id', edge.id);
}
util.applyClass(
domEdge,
edge['class'],
(domEdge.classed('update') ? 'update ' : '') + 'edgePath'
);
});
svgPaths.selectAll('path.path').each(function (e) {
var edge = g.edge(e);
edge.arrowheadId = _.uniqueId('arrowhead');
var domEdge = d3
.select(this)
.attr('marker-end', function () {
return 'url(' + makeFragmentRef(location.href, edge.arrowheadId) + ')';
})
.style('fill', 'none');
util.applyTransition(domEdge, g).attr('d', function (e) {
return calcPoints(g, e);
});
util.applyStyle(domEdge, edge.style);
});
svgPaths.selectAll('defs *').remove();
svgPaths.selectAll('defs').each(function (e) {
var edge = g.edge(e);
var arrowhead = arrows[edge.arrowhead];
arrowhead(d3.select(this), edge.arrowheadId, edge, 'arrowhead');
});
return svgPaths;
};
function setCreateEdgePaths(value) {
createEdgePaths = value;
}
function makeFragmentRef(url, fragmentId) {
var baseUrl = url.split('#')[0];
return baseUrl + '#' + fragmentId;
}
function calcPoints(g, e) {
var edge = g.edge(e);
var tail = g.node(e.v);
var head = g.node(e.w);
var points = edge.points.slice(1, edge.points.length - 1);
points.unshift(intersectNode(tail, points[0]));
points.push(intersectNode(head, points[points.length - 1]));
return createLine(edge, points);
}
function createLine(edge, points) {
var line = (d3.line || d3.svg.line)()
.x(function (d) {
return d.x;
})
.y(function (d) {
return d.y;
});
(line.curve || line.interpolate)(edge.curve);
return line(points);
}
function getCoords(elem) {
var bbox = elem.getBBox();
var matrix = elem.ownerSVGElement
.getScreenCTM()
.inverse()
.multiply(elem.getScreenCTM())
.translate(bbox.width / 2, bbox.height / 2);
return { x: matrix.e, y: matrix.f };
}
function enter(svgPaths, g) {
var svgPathsEnter = svgPaths.enter().append('g').attr('class', 'edgePath').style('opacity', 0);
svgPathsEnter
.append('path')
.attr('class', 'path')
.attr('d', function (e) {
var edge = g.edge(e);
var sourceElem = g.node(e.v).elem;
var points = _.range(edge.points.length).map(function () {
return getCoords(sourceElem);
});
return createLine(edge, points);
});
svgPathsEnter.append('defs');
return svgPathsEnter;
}
function exit(svgPaths, g) {
var svgPathExit = svgPaths.exit();
util.applyTransition(svgPathExit, g).style('opacity', 0).remove();
}

View File

@@ -0,0 +1,2 @@
export function createNodes(selection: any, g: any, shapes: any): any;
export function setCreateNodes(value: any): any;

92
node_modules/dagre-d3-es/src/dagre-js/create-nodes.js generated vendored Normal file
View File

@@ -0,0 +1,92 @@
import * as d3 from 'd3';
import * as _ from 'lodash-es';
import { addLabel } from './label/add-label.js';
import * as util from './util.js';
export { createNodes, setCreateNodes };
var createNodes = function (selection, g, shapes) {
var simpleNodes = g.nodes().filter(function (v) {
return !util.isSubgraph(g, v);
});
var svgNodes = selection
.selectAll('g.node')
.data(simpleNodes, function (v) {
return v;
})
.classed('update', true);
svgNodes.exit().remove();
svgNodes.enter().append('g').attr('class', 'node').style('opacity', 0);
svgNodes = selection.selectAll('g.node');
svgNodes.each(function (v) {
var node = g.node(v);
var thisGroup = d3.select(this);
util.applyClass(
thisGroup,
node['class'],
(thisGroup.classed('update') ? 'update ' : '') + 'node'
);
thisGroup.select('g.label').remove();
var labelGroup = thisGroup.append('g').attr('class', 'label');
var labelDom = addLabel(labelGroup, node);
var shape = shapes[node.shape];
var bbox = _.pick(labelDom.node().getBBox(), 'width', 'height');
node.elem = this;
if (node.id) {
thisGroup.attr('id', node.id);
}
if (node.labelId) {
labelGroup.attr('id', node.labelId);
}
if (_.has(node, 'width')) {
bbox.width = node.width;
}
if (_.has(node, 'height')) {
bbox.height = node.height;
}
bbox.width += node.paddingLeft + node.paddingRight;
bbox.height += node.paddingTop + node.paddingBottom;
labelGroup.attr(
'transform',
'translate(' +
(node.paddingLeft - node.paddingRight) / 2 +
',' +
(node.paddingTop - node.paddingBottom) / 2 +
')'
);
var root = d3.select(this);
root.select('.label-container').remove();
var shapeSvg = shape(root, bbox, node).classed('label-container', true);
util.applyStyle(shapeSvg, node.style);
var shapeBBox = shapeSvg.node().getBBox();
node.width = shapeBBox.width;
node.height = shapeBBox.height;
});
var exitSelection;
if (svgNodes.exit) {
exitSelection = svgNodes.exit();
} else {
exitSelection = svgNodes.selectAll(null); // empty selection
}
util.applyTransition(exitSelection, g).style('opacity', 0).remove();
return svgNodes;
};
function setCreateNodes(value) {
createNodes = value;
}

View File

@@ -0,0 +1,6 @@
import * as node from './intersect-node.js';
import * as circle from './intersect-circle.js';
import * as ellipse from './intersect-ellipse.js';
import * as polygon from './intersect-polygon.js';
import * as rect from './intersect-rect.js';
export { node, circle, ellipse, polygon, rect };

View File

@@ -0,0 +1,7 @@
import * as node from './intersect-node.js';
import * as circle from './intersect-circle.js';
import * as ellipse from './intersect-ellipse.js';
import * as polygon from './intersect-polygon.js';
import * as rect from './intersect-rect.js';
export { node, circle, ellipse, polygon, rect };

View File

@@ -0,0 +1,8 @@
export function intersectCircle(
node: any,
rx: any,
point: any
): {
x: any;
y: any;
};

View File

@@ -0,0 +1,7 @@
import { intersectEllipse } from './intersect-ellipse.js';
export { intersectCircle };
function intersectCircle(node, rx, point) {
return intersectEllipse(node, rx, rx, point);
}

View File

@@ -0,0 +1,9 @@
export function intersectEllipse(
node: any,
rx: any,
ry: any,
point: any
): {
x: any;
y: any;
};

View File

@@ -0,0 +1,24 @@
export { intersectEllipse };
function intersectEllipse(node, rx, ry, point) {
// Formulae from: http://mathworld.wolfram.com/Ellipse-LineIntersection.html
var cx = node.x;
var cy = node.y;
var px = cx - point.x;
var py = cy - point.y;
var det = Math.sqrt(rx * rx * py * py + ry * ry * px * px);
var dx = Math.abs((rx * ry * px) / det);
if (point.x < cx) {
dx = -dx;
}
var dy = Math.abs((rx * ry * py) / det);
if (point.y < cy) {
dy = -dy;
}
return { x: cx + dx, y: cy + dy };
}

View File

@@ -0,0 +1,9 @@
export function intersectLine(
p1: any,
p2: any,
q1: any,
q2: any
): {
x: number;
y: number;
};

View File

@@ -0,0 +1,70 @@
export { intersectLine };
/*
* Returns the point at which two lines, p and q, intersect or returns
* undefined if they do not intersect.
*/
function intersectLine(p1, p2, q1, q2) {
// Algorithm from J. Avro, (ed.) Graphics Gems, No 2, Morgan Kaufmann, 1994,
// p7 and p473.
var a1, a2, b1, b2, c1, c2;
var r1, r2, r3, r4;
var denom, offset, num;
var x, y;
// Compute a1, b1, c1, where line joining points 1 and 2 is F(x,y) = a1 x +
// b1 y + c1 = 0.
a1 = p2.y - p1.y;
b1 = p1.x - p2.x;
c1 = p2.x * p1.y - p1.x * p2.y;
// Compute r3 and r4.
r3 = a1 * q1.x + b1 * q1.y + c1;
r4 = a1 * q2.x + b1 * q2.y + c1;
// Check signs of r3 and r4. If both point 3 and point 4 lie on
// same side of line 1, the line segments do not intersect.
if (r3 !== 0 && r4 !== 0 && sameSign(r3, r4)) {
return /*DONT_INTERSECT*/;
}
// Compute a2, b2, c2 where line joining points 3 and 4 is G(x,y) = a2 x + b2 y + c2 = 0
a2 = q2.y - q1.y;
b2 = q1.x - q2.x;
c2 = q2.x * q1.y - q1.x * q2.y;
// Compute r1 and r2
r1 = a2 * p1.x + b2 * p1.y + c2;
r2 = a2 * p2.x + b2 * p2.y + c2;
// Check signs of r1 and r2. If both point 1 and point 2 lie
// on same side of second line segment, the line segments do
// not intersect.
if (r1 !== 0 && r2 !== 0 && sameSign(r1, r2)) {
return /*DONT_INTERSECT*/;
}
// Line segments intersect: compute intersection point.
denom = a1 * b2 - a2 * b1;
if (denom === 0) {
return /*COLLINEAR*/;
}
offset = Math.abs(denom / 2);
// The denom/2 is to get rounding instead of truncating. It
// is added or subtracted to the numerator, depending upon the
// sign of the numerator.
num = b1 * c2 - b2 * c1;
x = num < 0 ? (num - offset) / denom : (num + offset) / denom;
num = a2 * c1 - a1 * c2;
y = num < 0 ? (num - offset) / denom : (num + offset) / denom;
return { x: x, y: y };
}
function sameSign(r1, r2) {
return r1 * r2 > 0;
}

View File

@@ -0,0 +1 @@
export function intersectNode(node: any, point: any): any;

View File

@@ -0,0 +1,5 @@
export { intersectNode };
function intersectNode(node, point) {
return node.intersect(point);
}

View File

@@ -0,0 +1 @@
export function intersectPolygon(node: any, polyPoints: any, point: any): any;

View File

@@ -0,0 +1,59 @@
import { intersectLine } from './intersect-line.js';
export { intersectPolygon };
/*
* Returns the point ({x, y}) at which the point argument intersects with the
* node argument assuming that it has the shape specified by polygon.
*/
function intersectPolygon(node, polyPoints, point) {
var x1 = node.x;
var y1 = node.y;
var intersections = [];
var minX = Number.POSITIVE_INFINITY;
var minY = Number.POSITIVE_INFINITY;
polyPoints.forEach(function (entry) {
minX = Math.min(minX, entry.x);
minY = Math.min(minY, entry.y);
});
var left = x1 - node.width / 2 - minX;
var top = y1 - node.height / 2 - minY;
for (var i = 0; i < polyPoints.length; i++) {
var p1 = polyPoints[i];
var p2 = polyPoints[i < polyPoints.length - 1 ? i + 1 : 0];
var intersect = intersectLine(
node,
point,
{ x: left + p1.x, y: top + p1.y },
{ x: left + p2.x, y: top + p2.y }
);
if (intersect) {
intersections.push(intersect);
}
}
if (!intersections.length) {
console.log('NO INTERSECTION FOUND, RETURN NODE CENTER', node);
return node;
}
if (intersections.length > 1) {
// More intersections, find the one nearest to edge end point
intersections.sort(function (p, q) {
var pdx = p.x - point.x;
var pdy = p.y - point.y;
var distp = Math.sqrt(pdx * pdx + pdy * pdy);
var qdx = q.x - point.x;
var qdy = q.y - point.y;
var distq = Math.sqrt(qdx * qdx + qdy * qdy);
return distp < distq ? -1 : distp === distq ? 0 : 1;
});
}
return intersections[0];
}

View File

@@ -0,0 +1,7 @@
export function intersectRect(
node: any,
point: any
): {
x: any;
y: any;
};

View File

@@ -0,0 +1,32 @@
export { intersectRect };
function intersectRect(node, point) {
var x = node.x;
var y = node.y;
// Rectangle intersection algorithm from:
// http://math.stackexchange.com/questions/108113/find-edge-between-two-boxes
var dx = point.x - x;
var dy = point.y - y;
var w = node.width / 2;
var h = node.height / 2;
var sx, sy;
if (Math.abs(dy) * w > Math.abs(dx) * h) {
// Intersection is top or bottom of rect.
if (dy < 0) {
h = -h;
}
sx = dy === 0 ? 0 : (h * dx) / dy;
sy = h;
} else {
// Intersection is left or right of rect.
if (dx < 0) {
w = -w;
}
sx = w;
sy = dx === 0 ? 0 : (w * dy) / dx;
}
return { x: x + sx, y: y + sy };
}

View File

@@ -0,0 +1 @@
export function addHtmlLabel(root: any, node: any): any;

View File

@@ -0,0 +1,35 @@
import * as util from '../util.js';
export { addHtmlLabel };
function addHtmlLabel(root, node) {
var fo = root.append('foreignObject').attr('width', '100000');
var div = fo.append('xhtml:div');
div.attr('xmlns', 'http://www.w3.org/1999/xhtml');
var label = node.label;
switch (typeof label) {
case 'function':
div.insert(label);
break;
case 'object':
// Currently we assume this is a DOM object.
div.insert(function () {
return label;
});
break;
default:
div.html(label);
}
util.applyStyle(div, node.labelStyle);
div.style('display', 'inline-block');
// Fix for firefox
div.style('white-space', 'nowrap');
var client = div.node().getBoundingClientRect();
fo.attr('width', client.width).attr('height', client.height);
return fo;
}

View File

@@ -0,0 +1 @@
export function addLabel(root: any, node: any, location: any): any;

View File

@@ -0,0 +1,36 @@
import { addHtmlLabel } from './add-html-label.js';
import { addSVGLabel } from './add-svg-label.js';
import { addTextLabel } from './add-text-label.js';
export { addLabel };
function addLabel(root, node, location) {
var label = node.label;
var labelSvg = root.append('g');
// Allow the label to be a string, a function that returns a DOM element, or
// a DOM element itself.
if (node.labelType === 'svg') {
addSVGLabel(labelSvg, node);
} else if (typeof label !== 'string' || node.labelType === 'html') {
addHtmlLabel(labelSvg, node);
} else {
addTextLabel(labelSvg, node);
}
var labelBBox = labelSvg.node().getBBox();
var y;
switch (location) {
case 'top':
y = -node.height / 2;
break;
case 'bottom':
y = node.height / 2 - labelBBox.height;
break;
default:
y = -labelBBox.height / 2;
}
labelSvg.attr('transform', 'translate(' + -labelBBox.width / 2 + ',' + y + ')');
return labelSvg;
}

View File

@@ -0,0 +1 @@
export function addSVGLabel(root: any, node: any): any;

View File

@@ -0,0 +1,13 @@
import * as util from '../util.js';
export { addSVGLabel };
function addSVGLabel(root, node) {
var domNode = root;
domNode.node().appendChild(node.label);
util.applyStyle(domNode, node.labelStyle);
return domNode;
}

View File

@@ -0,0 +1 @@
export function addTextLabel(root: any, node: any): any;

View File

@@ -0,0 +1,48 @@
import * as util from '../util.js';
export { addTextLabel };
/*
* Attaches a text label to the specified root. Handles escape sequences.
*/
function addTextLabel(root, node) {
var domNode = root.append('text');
var lines = processEscapeSequences(node.label).split('\n');
for (var i = 0; i < lines.length; i++) {
domNode
.append('tspan')
.attr('xml:space', 'preserve')
.attr('dy', '1em')
.attr('x', '1')
.text(lines[i]);
}
util.applyStyle(domNode, node.labelStyle);
return domNode;
}
function processEscapeSequences(text) {
var newText = '';
var escaped = false;
var ch;
for (var i = 0; i < text.length; ++i) {
ch = text[i];
if (escaped) {
switch (ch) {
case 'n':
newText += '\n';
break;
default:
newText += ch;
}
escaped = false;
} else if (ch === '\\') {
escaped = true;
} else {
newText += ch;
}
}
return newText;
}

View File

@@ -0,0 +1 @@
export function positionClusters(selection: any, g: any): void;

View File

@@ -0,0 +1,36 @@
import * as d3 from 'd3';
import * as util from './util.js';
export { positionClusters };
function positionClusters(selection, g) {
var created = selection.filter(function () {
return !d3.select(this).classed('update');
});
function translate(v) {
var node = g.node(v);
return 'translate(' + node.x + ',' + node.y + ')';
}
created.attr('transform', translate);
util.applyTransition(selection, g).style('opacity', 1).attr('transform', translate);
util
.applyTransition(created.selectAll('rect'), g)
.attr('width', function (v) {
return g.node(v).width;
})
.attr('height', function (v) {
return g.node(v).height;
})
.attr('x', function (v) {
var node = g.node(v);
return -node.width / 2;
})
.attr('y', function (v) {
var node = g.node(v);
return -node.height / 2;
});
}

View File

@@ -0,0 +1 @@
export function positionEdgeLabels(selection: any, g: any): void;

View File

@@ -0,0 +1,20 @@
import * as d3 from 'd3';
import * as _ from 'lodash-es';
import * as util from './util.js';
export { positionEdgeLabels };
function positionEdgeLabels(selection, g) {
var created = selection.filter(function () {
return !d3.select(this).classed('update');
});
function translate(e) {
var edge = g.edge(e);
return _.has(edge, 'x') ? 'translate(' + edge.x + ',' + edge.y + ')' : '';
}
created.attr('transform', translate);
util.applyTransition(selection, g).style('opacity', 1).attr('transform', translate);
}

View File

@@ -0,0 +1 @@
export function positionNodes(selection: any, g: any): void;

View File

@@ -0,0 +1,19 @@
import * as d3 from 'd3';
import * as util from './util.js';
export { positionNodes };
function positionNodes(selection, g) {
var created = selection.filter(function () {
return !d3.select(this).classed('update');
});
function translate(v) {
var node = g.node(v);
return 'translate(' + node.x + ',' + node.y + ')';
}
created.attr('transform', translate);
util.applyTransition(selection, g).style('opacity', 1).attr('transform', translate);
}

15
node_modules/dagre-d3-es/src/dagre-js/render.d.ts generated vendored Normal file
View File

@@ -0,0 +1,15 @@
export function render(): {
(svg: any, g: any): void;
createNodes(...args: any[]): typeof createNodes;
createClusters(value: any, ...args: any[]): typeof createClusters;
createEdgeLabels(value: any, ...args: any[]): typeof createEdgeLabels;
createEdgePaths(value: any, ...args: any[]): typeof createEdgePaths;
shapes(value: any, ...args: any[]): typeof shapes | any;
arrows(value: any, ...args: any[]): typeof arrows | any;
};
import { createNodes } from './create-nodes.js';
import { createClusters } from './create-clusters.js';
import { createEdgeLabels } from './create-edge-labels.js';
import { createEdgePaths } from './create-edge-paths.js';
import * as shapes from './shapes.js';
import * as arrows from './arrows.js';

175
node_modules/dagre-d3-es/src/dagre-js/render.js generated vendored Normal file
View File

@@ -0,0 +1,175 @@
import * as d3 from 'd3';
import * as _ from 'lodash-es';
import { layout } from '../dagre/index.js';
import { arrows, setArrows } from './arrows.js';
import { createClusters, setCreateClusters } from './create-clusters.js';
import { createEdgeLabels, setCreateEdgeLabels } from './create-edge-labels.js';
import { createEdgePaths, setCreateEdgePaths } from './create-edge-paths.js';
import { createNodes, setCreateNodes } from './create-nodes.js';
import { positionClusters } from './position-clusters.js';
import { positionEdgeLabels } from './position-edge-labels.js';
import { positionNodes } from './position-nodes.js';
import { shapes, setShapes } from './shapes.js';
export { render };
// This design is based on http://bost.ocks.org/mike/chart/.
function render() {
var fn = function (svg, g) {
preProcessGraph(g);
var outputGroup = createOrSelectGroup(svg, 'output');
var clustersGroup = createOrSelectGroup(outputGroup, 'clusters');
var edgePathsGroup = createOrSelectGroup(outputGroup, 'edgePaths');
var edgeLabels = createEdgeLabels(createOrSelectGroup(outputGroup, 'edgeLabels'), g);
var nodes = createNodes(createOrSelectGroup(outputGroup, 'nodes'), g, shapes);
layout(g);
positionNodes(nodes, g);
positionEdgeLabels(edgeLabels, g);
createEdgePaths(edgePathsGroup, g, arrows);
var clusters = createClusters(clustersGroup, g);
positionClusters(clusters, g);
postProcessGraph(g);
};
fn.createNodes = function (value) {
if (!arguments.length) return createNodes;
setCreateNodes(value);
return fn;
};
fn.createClusters = function (value) {
if (!arguments.length) return createClusters;
setCreateClusters(value);
return fn;
};
fn.createEdgeLabels = function (value) {
if (!arguments.length) return createEdgeLabels;
setCreateEdgeLabels(value);
return fn;
};
fn.createEdgePaths = function (value) {
if (!arguments.length) return createEdgePaths;
setCreateEdgePaths(value);
return fn;
};
fn.shapes = function (value) {
if (!arguments.length) return shapes;
setShapes(value);
return fn;
};
fn.arrows = function (value) {
if (!arguments.length) return arrows;
setArrows(value);
return fn;
};
return fn;
}
var NODE_DEFAULT_ATTRS = {
paddingLeft: 10,
paddingRight: 10,
paddingTop: 10,
paddingBottom: 10,
rx: 0,
ry: 0,
shape: 'rect',
};
var EDGE_DEFAULT_ATTRS = {
arrowhead: 'normal',
curve: d3.curveLinear,
};
function preProcessGraph(g) {
g.nodes().forEach(function (v) {
var node = g.node(v);
if (!_.has(node, 'label') && !g.children(v).length) {
node.label = v;
}
if (_.has(node, 'paddingX')) {
_.defaults(node, {
paddingLeft: node.paddingX,
paddingRight: node.paddingX,
});
}
if (_.has(node, 'paddingY')) {
_.defaults(node, {
paddingTop: node.paddingY,
paddingBottom: node.paddingY,
});
}
if (_.has(node, 'padding')) {
_.defaults(node, {
paddingLeft: node.padding,
paddingRight: node.padding,
paddingTop: node.padding,
paddingBottom: node.padding,
});
}
_.defaults(node, NODE_DEFAULT_ATTRS);
_.each(['paddingLeft', 'paddingRight', 'paddingTop', 'paddingBottom'], function (k) {
node[k] = Number(node[k]);
});
// Save dimensions for restore during post-processing
if (_.has(node, 'width')) {
node._prevWidth = node.width;
}
if (_.has(node, 'height')) {
node._prevHeight = node.height;
}
});
g.edges().forEach(function (e) {
var edge = g.edge(e);
if (!_.has(edge, 'label')) {
edge.label = '';
}
_.defaults(edge, EDGE_DEFAULT_ATTRS);
});
}
function postProcessGraph(g) {
_.each(g.nodes(), function (v) {
var node = g.node(v);
// Restore original dimensions
if (_.has(node, '_prevWidth')) {
node.width = node._prevWidth;
} else {
delete node.width;
}
if (_.has(node, '_prevHeight')) {
node.height = node._prevHeight;
} else {
delete node.height;
}
delete node._prevWidth;
delete node._prevHeight;
});
}
function createOrSelectGroup(root, name) {
var selection = root.select('g.' + name);
if (selection.empty()) {
selection = root.append('g').attr('class', name);
}
return selection;
}

2
node_modules/dagre-d3-es/src/dagre-js/shapes.d.ts generated vendored Normal file
View File

@@ -0,0 +1,2 @@
export var shapes: any;
export function setShapes(value: any): any;

94
node_modules/dagre-d3-es/src/dagre-js/shapes.js generated vendored Normal file
View File

@@ -0,0 +1,94 @@
import { intersectCircle } from './intersect/intersect-circle.js';
import { intersectEllipse } from './intersect/intersect-ellipse.js';
import { intersectPolygon } from './intersect/intersect-polygon.js';
import { intersectRect } from './intersect/intersect-rect.js';
export { shapes, setShapes };
var shapes = {
rect,
ellipse,
circle,
diamond,
};
function setShapes(value) {
shapes = value;
}
function rect(parent, bbox, node) {
var shapeSvg = parent
.insert('rect', ':first-child')
.attr('rx', node.rx)
.attr('ry', node.ry)
.attr('x', -bbox.width / 2)
.attr('y', -bbox.height / 2)
.attr('width', bbox.width)
.attr('height', bbox.height);
node.intersect = function (point) {
return intersectRect(node, point);
};
return shapeSvg;
}
function ellipse(parent, bbox, node) {
var rx = bbox.width / 2;
var ry = bbox.height / 2;
var shapeSvg = parent
.insert('ellipse', ':first-child')
.attr('x', -bbox.width / 2)
.attr('y', -bbox.height / 2)
.attr('rx', rx)
.attr('ry', ry);
node.intersect = function (point) {
return intersectEllipse(node, rx, ry, point);
};
return shapeSvg;
}
function circle(parent, bbox, node) {
var r = Math.max(bbox.width, bbox.height) / 2;
var shapeSvg = parent
.insert('circle', ':first-child')
.attr('x', -bbox.width / 2)
.attr('y', -bbox.height / 2)
.attr('r', r);
node.intersect = function (point) {
return intersectCircle(node, r, point);
};
return shapeSvg;
}
// Circumscribe an ellipse for the bounding box with a diamond shape. I derived
// the function to calculate the diamond shape from:
// http://mathforum.org/kb/message.jspa?messageID=3750236
function diamond(parent, bbox, node) {
var w = (bbox.width * Math.SQRT2) / 2;
var h = (bbox.height * Math.SQRT2) / 2;
var points = [
{ x: 0, y: -h },
{ x: -w, y: 0 },
{ x: 0, y: h },
{ x: w, y: 0 },
];
var shapeSvg = parent.insert('polygon', ':first-child').attr(
'points',
points
.map(function (p) {
return p.x + ',' + p.y;
})
.join(' ')
);
node.intersect = function (p) {
return intersectPolygon(node, points, p);
};
return shapeSvg;
}

5
node_modules/dagre-d3-es/src/dagre-js/util.d.ts generated vendored Normal file
View File

@@ -0,0 +1,5 @@
export function isSubgraph(g: any, v: any): boolean;
export function edgeToId(e: any): string;
export function applyStyle(dom: any, styleFn: any): void;
export function applyClass(dom: any, classFn: any, otherClasses: any): void;
export function applyTransition(selection: any, g: any): any;

46
node_modules/dagre-d3-es/src/dagre-js/util.js generated vendored Normal file
View File

@@ -0,0 +1,46 @@
import * as _ from 'lodash-es';
// Public utility functions
export { isSubgraph, edgeToId, applyStyle, applyClass, applyTransition };
/*
* Returns true if the specified node in the graph is a subgraph node. A
* subgraph node is one that contains other nodes.
*/
function isSubgraph(g, v) {
return !!g.children(v).length;
}
function edgeToId(e) {
return escapeId(e.v) + ':' + escapeId(e.w) + ':' + escapeId(e.name);
}
var ID_DELIM = /:/g;
function escapeId(str) {
return str ? String(str).replace(ID_DELIM, '\\:') : '';
}
function applyStyle(dom, styleFn) {
if (styleFn) {
dom.attr('style', styleFn);
}
}
function applyClass(dom, classFn, otherClasses) {
if (classFn) {
dom.attr('class', classFn).attr('class', otherClasses + ' ' + dom.attr('class'));
}
}
function applyTransition(selection, g) {
var graph = g.graph();
if (_.isPlainObject(graph)) {
var transition = graph.transition;
if (_.isFunction(transition)) {
return transition(selection);
}
}
return selection;
}

2
node_modules/dagre-d3-es/src/dagre/acyclic.d.ts generated vendored Normal file
View File

@@ -0,0 +1,2 @@
export function run(g: any): void;
export function undo(g: any): void;

60
node_modules/dagre-d3-es/src/dagre/acyclic.js generated vendored Normal file
View File

@@ -0,0 +1,60 @@
import * as _ from 'lodash-es';
import { greedyFAS } from './greedy-fas.js';
export { run, undo };
function run(g) {
var fas = g.graph().acyclicer === 'greedy' ? greedyFAS(g, weightFn(g)) : dfsFAS(g);
_.forEach(fas, function (e) {
var label = g.edge(e);
g.removeEdge(e);
label.forwardName = e.name;
label.reversed = true;
g.setEdge(e.w, e.v, label, _.uniqueId('rev'));
});
function weightFn(g) {
return function (e) {
return g.edge(e).weight;
};
}
}
function dfsFAS(g) {
var fas = [];
var stack = {};
var visited = {};
function dfs(v) {
if (_.has(visited, v)) {
return;
}
visited[v] = true;
stack[v] = true;
_.forEach(g.outEdges(v), function (e) {
if (_.has(stack, e.w)) {
fas.push(e);
} else {
dfs(e.w);
}
});
delete stack[v];
}
_.forEach(g.nodes(), dfs);
return fas;
}
function undo(g) {
_.forEach(g.edges(), function (e) {
var label = g.edge(e);
if (label.reversed) {
g.removeEdge(e);
var forwardName = label.forwardName;
delete label.reversed;
delete label.forwardName;
g.setEdge(e.w, e.v, label, forwardName);
}
});
}

View File

@@ -0,0 +1 @@
export function addBorderSegments(g: any): void;

View File

@@ -0,0 +1,36 @@
import * as _ from 'lodash-es';
import * as util from './util.js';
export { addBorderSegments };
function addBorderSegments(g) {
function dfs(v) {
var children = g.children(v);
var node = g.node(v);
if (children.length) {
_.forEach(children, dfs);
}
if (_.has(node, 'minRank')) {
node.borderLeft = [];
node.borderRight = [];
for (var rank = node.minRank, maxRank = node.maxRank + 1; rank < maxRank; ++rank) {
addBorderNode(g, 'borderLeft', '_bl', v, node, rank);
addBorderNode(g, 'borderRight', '_br', v, node, rank);
}
}
}
_.forEach(g.children(), dfs);
}
function addBorderNode(g, prop, prefix, sg, sgNode, rank) {
var label = { width: 0, height: 0, rank: rank, borderType: prop };
var prev = sgNode[prop][rank - 1];
var curr = util.addDummyNode(g, 'border', label, prefix);
sgNode[prop][rank] = curr;
g.setParent(curr, sg);
if (prev) {
g.setEdge(prev, curr, { weight: 1 });
}
}

View File

@@ -0,0 +1,2 @@
export function adjust(g: any): void;
export function undo(g: any): void;

View File

@@ -0,0 +1,75 @@
import * as _ from 'lodash-es';
export { adjust, undo };
function adjust(g) {
var rankDir = g.graph().rankdir.toLowerCase();
if (rankDir === 'lr' || rankDir === 'rl') {
swapWidthHeight(g);
}
}
function undo(g) {
var rankDir = g.graph().rankdir.toLowerCase();
if (rankDir === 'bt' || rankDir === 'rl') {
reverseY(g);
}
if (rankDir === 'lr' || rankDir === 'rl') {
swapXY(g);
swapWidthHeight(g);
}
}
function swapWidthHeight(g) {
_.forEach(g.nodes(), function (v) {
swapWidthHeightOne(g.node(v));
});
_.forEach(g.edges(), function (e) {
swapWidthHeightOne(g.edge(e));
});
}
function swapWidthHeightOne(attrs) {
var w = attrs.width;
attrs.width = attrs.height;
attrs.height = w;
}
function reverseY(g) {
_.forEach(g.nodes(), function (v) {
reverseYOne(g.node(v));
});
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
_.forEach(edge.points, reverseYOne);
if (_.has(edge, 'y')) {
reverseYOne(edge);
}
});
}
function reverseYOne(attrs) {
attrs.y = -attrs.y;
}
function swapXY(g) {
_.forEach(g.nodes(), function (v) {
swapXYOne(g.node(v));
});
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
_.forEach(edge.points, swapXYOne);
if (_.has(edge, 'x')) {
swapXYOne(edge);
}
});
}
function swapXYOne(attrs) {
var x = attrs.x;
attrs.x = attrs.y;
attrs.y = x;
}

12
node_modules/dagre-d3-es/src/dagre/data/list.d.ts generated vendored Normal file
View File

@@ -0,0 +1,12 @@
export class List {
_sentinel: {
_next: any;
_prev: any;
};
dequeue(): {
_next: any;
_prev: any;
};
enqueue(entry: any): void;
toString(): string;
}

55
node_modules/dagre-d3-es/src/dagre/data/list.js generated vendored Normal file
View File

@@ -0,0 +1,55 @@
/*
* Simple doubly linked list implementation derived from Cormen, et al.,
* "Introduction to Algorithms".
*/
export { List };
class List {
constructor() {
var sentinel = {};
sentinel._next = sentinel._prev = sentinel;
this._sentinel = sentinel;
}
dequeue() {
var sentinel = this._sentinel;
var entry = sentinel._prev;
if (entry !== sentinel) {
unlink(entry);
return entry;
}
}
enqueue(entry) {
var sentinel = this._sentinel;
if (entry._prev && entry._next) {
unlink(entry);
}
entry._next = sentinel._next;
sentinel._next._prev = entry;
sentinel._next = entry;
entry._prev = sentinel;
}
toString() {
var strs = [];
var sentinel = this._sentinel;
var curr = sentinel._prev;
while (curr !== sentinel) {
strs.push(JSON.stringify(curr, filterOutLinks));
curr = curr._prev;
}
return '[' + strs.join(', ') + ']';
}
}
function unlink(entry) {
entry._prev._next = entry._next;
entry._next._prev = entry._prev;
delete entry._next;
delete entry._prev;
}
function filterOutLinks(k, v) {
if (k !== '_next' && k !== '_prev') {
return v;
}
}

32
node_modules/dagre-d3-es/src/dagre/debug.js generated vendored Normal file
View File

@@ -0,0 +1,32 @@
import * as _ from 'lodash-es';
import { Graph } from '../graphlib/index.js';
import * as util from './util.js';
export { debugOrdering };
/* istanbul ignore next */
function debugOrdering(g) {
var layerMatrix = util.buildLayerMatrix(g);
var h = new Graph({ compound: true, multigraph: true }).setGraph({});
_.forEach(g.nodes(), function (v) {
h.setNode(v, { label: v });
h.setParent(v, 'layer' + g.node(v).rank);
});
_.forEach(g.edges(), function (e) {
h.setEdge(e.v, e.w, {}, e.name);
});
_.forEach(layerMatrix, function (layer, i) {
var layerV = 'layer' + i;
h.setNode(layerV, { rank: 'same' });
_.reduce(layer, function (u, v) {
h.setEdge(u, v, { style: 'invis' });
return v;
});
});
return h;
}

1
node_modules/dagre-d3-es/src/dagre/greedy-fas.d.ts generated vendored Normal file
View File

@@ -0,0 +1 @@
export function greedyFAS(g: any, weightFn: any): any;

127
node_modules/dagre-d3-es/src/dagre/greedy-fas.js generated vendored Normal file
View File

@@ -0,0 +1,127 @@
import * as _ from 'lodash-es';
import { Graph } from '../graphlib/index.js';
import { List } from './data/list.js';
/*
* A greedy heuristic for finding a feedback arc set for a graph. A feedback
* arc set is a set of edges that can be removed to make a graph acyclic.
* The algorithm comes from: P. Eades, X. Lin, and W. F. Smyth, "A fast and
* effective heuristic for the feedback arc set problem." This implementation
* adjusts that from the paper to allow for weighted edges.
*/
export { greedyFAS };
var DEFAULT_WEIGHT_FN = _.constant(1);
function greedyFAS(g, weightFn) {
if (g.nodeCount() <= 1) {
return [];
}
var state = buildState(g, weightFn || DEFAULT_WEIGHT_FN);
var results = doGreedyFAS(state.graph, state.buckets, state.zeroIdx);
// Expand multi-edges
return _.flatten(
_.map(results, function (e) {
return g.outEdges(e.v, e.w);
}),
true
);
}
function doGreedyFAS(g, buckets, zeroIdx) {
var results = [];
var sources = buckets[buckets.length - 1];
var sinks = buckets[0];
var entry;
while (g.nodeCount()) {
while ((entry = sinks.dequeue())) {
removeNode(g, buckets, zeroIdx, entry);
}
while ((entry = sources.dequeue())) {
removeNode(g, buckets, zeroIdx, entry);
}
if (g.nodeCount()) {
for (var i = buckets.length - 2; i > 0; --i) {
entry = buckets[i].dequeue();
if (entry) {
results = results.concat(removeNode(g, buckets, zeroIdx, entry, true));
break;
}
}
}
}
return results;
}
function removeNode(g, buckets, zeroIdx, entry, collectPredecessors) {
var results = collectPredecessors ? [] : undefined;
_.forEach(g.inEdges(entry.v), function (edge) {
var weight = g.edge(edge);
var uEntry = g.node(edge.v);
if (collectPredecessors) {
results.push({ v: edge.v, w: edge.w });
}
uEntry.out -= weight;
assignBucket(buckets, zeroIdx, uEntry);
});
_.forEach(g.outEdges(entry.v), function (edge) {
var weight = g.edge(edge);
var w = edge.w;
var wEntry = g.node(w);
wEntry['in'] -= weight;
assignBucket(buckets, zeroIdx, wEntry);
});
g.removeNode(entry.v);
return results;
}
function buildState(g, weightFn) {
var fasGraph = new Graph();
var maxIn = 0;
var maxOut = 0;
_.forEach(g.nodes(), function (v) {
fasGraph.setNode(v, { v: v, in: 0, out: 0 });
});
// Aggregate weights on nodes, but also sum the weights across multi-edges
// into a single edge for the fasGraph.
_.forEach(g.edges(), function (e) {
var prevWeight = fasGraph.edge(e.v, e.w) || 0;
var weight = weightFn(e);
var edgeWeight = prevWeight + weight;
fasGraph.setEdge(e.v, e.w, edgeWeight);
maxOut = Math.max(maxOut, (fasGraph.node(e.v).out += weight));
maxIn = Math.max(maxIn, (fasGraph.node(e.w)['in'] += weight));
});
var buckets = _.range(maxOut + maxIn + 3).map(function () {
return new List();
});
var zeroIdx = maxIn + 1;
_.forEach(fasGraph.nodes(), function (v) {
assignBucket(buckets, zeroIdx, fasGraph.node(v));
});
return { graph: fasGraph, buckets: buckets, zeroIdx: zeroIdx };
}
function assignBucket(buckets, zeroIdx, entry) {
if (!entry.out) {
buckets[0].enqueue(entry);
} else if (!entry['in']) {
buckets[buckets.length - 1].enqueue(entry);
} else {
buckets[entry.out - entry['in'] + zeroIdx].enqueue(entry);
}
}

5
node_modules/dagre-d3-es/src/dagre/index.d.ts generated vendored Normal file
View File

@@ -0,0 +1,5 @@
import * as acyclic from './acyclic.js';
import * as normalize from './normalize.js';
import { rank } from './rank.js';
import { layout } from './layout.js';
export { acyclic, normalize, rank, layout };

6
node_modules/dagre-d3-es/src/dagre/index.js generated vendored Normal file
View File

@@ -0,0 +1,6 @@
import * as acyclic from './acyclic.js';
import { layout } from './layout.js';
import * as normalize from './normalize.js';
import { rank } from './rank/index.js';
export { acyclic, normalize, rank, layout };

1
node_modules/dagre-d3-es/src/dagre/layout.d.ts generated vendored Normal file
View File

@@ -0,0 +1 @@
export function layout(g: any, opts: any): void;

463
node_modules/dagre-d3-es/src/dagre/layout.js generated vendored Normal file
View File

@@ -0,0 +1,463 @@
import * as _ from 'lodash-es';
import { Graph } from '../graphlib/index.js';
import { addBorderSegments } from './add-border-segments.js';
import * as coordinateSystem from './coordinate-system.js';
import { acyclic, normalize, rank } from './index.js';
import * as nestingGraph from './nesting-graph.js';
import { order } from './order/index.js';
import { parentDummyChains } from './parent-dummy-chains.js';
import { position } from './position/index.js';
import * as util from './util.js';
export { layout };
function layout(g, opts) {
var time = opts && opts.debugTiming ? util.time : util.notime;
time('layout', function () {
var layoutGraph = time(' buildLayoutGraph', function () {
return buildLayoutGraph(g);
});
time(' runLayout', function () {
runLayout(layoutGraph, time);
});
time(' updateInputGraph', function () {
updateInputGraph(g, layoutGraph);
});
});
}
function runLayout(g, time) {
time(' makeSpaceForEdgeLabels', function () {
makeSpaceForEdgeLabels(g);
});
time(' removeSelfEdges', function () {
removeSelfEdges(g);
});
time(' acyclic', function () {
acyclic.run(g);
});
time(' nestingGraph.run', function () {
nestingGraph.run(g);
});
time(' rank', function () {
rank(util.asNonCompoundGraph(g));
});
time(' injectEdgeLabelProxies', function () {
injectEdgeLabelProxies(g);
});
time(' removeEmptyRanks', function () {
util.removeEmptyRanks(g);
});
time(' nestingGraph.cleanup', function () {
nestingGraph.cleanup(g);
});
time(' normalizeRanks', function () {
util.normalizeRanks(g);
});
time(' assignRankMinMax', function () {
assignRankMinMax(g);
});
time(' removeEdgeLabelProxies', function () {
removeEdgeLabelProxies(g);
});
time(' normalize.run', function () {
normalize.run(g);
});
time(' parentDummyChains', function () {
parentDummyChains(g);
});
time(' addBorderSegments', function () {
addBorderSegments(g);
});
time(' order', function () {
order(g);
});
time(' insertSelfEdges', function () {
insertSelfEdges(g);
});
time(' adjustCoordinateSystem', function () {
coordinateSystem.adjust(g);
});
time(' position', function () {
position(g);
});
time(' positionSelfEdges', function () {
positionSelfEdges(g);
});
time(' removeBorderNodes', function () {
removeBorderNodes(g);
});
time(' normalize.undo', function () {
normalize.undo(g);
});
time(' fixupEdgeLabelCoords', function () {
fixupEdgeLabelCoords(g);
});
time(' undoCoordinateSystem', function () {
coordinateSystem.undo(g);
});
time(' translateGraph', function () {
translateGraph(g);
});
time(' assignNodeIntersects', function () {
assignNodeIntersects(g);
});
time(' reversePoints', function () {
reversePointsForReversedEdges(g);
});
time(' acyclic.undo', function () {
acyclic.undo(g);
});
}
/*
* Copies final layout information from the layout graph back to the input
* graph. This process only copies whitelisted attributes from the layout graph
* to the input graph, so it serves as a good place to determine what
* attributes can influence layout.
*/
function updateInputGraph(inputGraph, layoutGraph) {
_.forEach(inputGraph.nodes(), function (v) {
var inputLabel = inputGraph.node(v);
var layoutLabel = layoutGraph.node(v);
if (inputLabel) {
inputLabel.x = layoutLabel.x;
inputLabel.y = layoutLabel.y;
if (layoutGraph.children(v).length) {
inputLabel.width = layoutLabel.width;
inputLabel.height = layoutLabel.height;
}
}
});
_.forEach(inputGraph.edges(), function (e) {
var inputLabel = inputGraph.edge(e);
var layoutLabel = layoutGraph.edge(e);
inputLabel.points = layoutLabel.points;
if (_.has(layoutLabel, 'x')) {
inputLabel.x = layoutLabel.x;
inputLabel.y = layoutLabel.y;
}
});
inputGraph.graph().width = layoutGraph.graph().width;
inputGraph.graph().height = layoutGraph.graph().height;
}
var graphNumAttrs = ['nodesep', 'edgesep', 'ranksep', 'marginx', 'marginy'];
var graphDefaults = { ranksep: 50, edgesep: 20, nodesep: 50, rankdir: 'tb' };
var graphAttrs = ['acyclicer', 'ranker', 'rankdir', 'align'];
var nodeNumAttrs = ['width', 'height'];
var nodeDefaults = { width: 0, height: 0 };
var edgeNumAttrs = ['minlen', 'weight', 'width', 'height', 'labeloffset'];
var edgeDefaults = {
minlen: 1,
weight: 1,
width: 0,
height: 0,
labeloffset: 10,
labelpos: 'r',
};
var edgeAttrs = ['labelpos'];
/*
* Constructs a new graph from the input graph, which can be used for layout.
* This process copies only whitelisted attributes from the input graph to the
* layout graph. Thus this function serves as a good place to determine what
* attributes can influence layout.
*/
function buildLayoutGraph(inputGraph) {
var g = new Graph({ multigraph: true, compound: true });
var graph = canonicalize(inputGraph.graph());
g.setGraph(
_.merge({}, graphDefaults, selectNumberAttrs(graph, graphNumAttrs), _.pick(graph, graphAttrs))
);
_.forEach(inputGraph.nodes(), function (v) {
var node = canonicalize(inputGraph.node(v));
g.setNode(v, _.defaults(selectNumberAttrs(node, nodeNumAttrs), nodeDefaults));
g.setParent(v, inputGraph.parent(v));
});
_.forEach(inputGraph.edges(), function (e) {
var edge = canonicalize(inputGraph.edge(e));
g.setEdge(
e,
_.merge({}, edgeDefaults, selectNumberAttrs(edge, edgeNumAttrs), _.pick(edge, edgeAttrs))
);
});
return g;
}
/*
* This idea comes from the Gansner paper: to account for edge labels in our
* layout we split each rank in half by doubling minlen and halving ranksep.
* Then we can place labels at these mid-points between nodes.
*
* We also add some minimal padding to the width to push the label for the edge
* away from the edge itself a bit.
*/
function makeSpaceForEdgeLabels(g) {
var graph = g.graph();
graph.ranksep /= 2;
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
edge.minlen *= 2;
if (edge.labelpos.toLowerCase() !== 'c') {
if (graph.rankdir === 'TB' || graph.rankdir === 'BT') {
edge.width += edge.labeloffset;
} else {
edge.height += edge.labeloffset;
}
}
});
}
/*
* Creates temporary dummy nodes that capture the rank in which each edge's
* label is going to, if it has one of non-zero width and height. We do this
* so that we can safely remove empty ranks while preserving balance for the
* label's position.
*/
function injectEdgeLabelProxies(g) {
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
if (edge.width && edge.height) {
var v = g.node(e.v);
var w = g.node(e.w);
var label = { rank: (w.rank - v.rank) / 2 + v.rank, e: e };
util.addDummyNode(g, 'edge-proxy', label, '_ep');
}
});
}
function assignRankMinMax(g) {
var maxRank = 0;
_.forEach(g.nodes(), function (v) {
var node = g.node(v);
if (node.borderTop) {
node.minRank = g.node(node.borderTop).rank;
node.maxRank = g.node(node.borderBottom).rank;
maxRank = _.max(maxRank, node.maxRank);
}
});
g.graph().maxRank = maxRank;
}
function removeEdgeLabelProxies(g) {
_.forEach(g.nodes(), function (v) {
var node = g.node(v);
if (node.dummy === 'edge-proxy') {
g.edge(node.e).labelRank = node.rank;
g.removeNode(v);
}
});
}
function translateGraph(g) {
var minX = Number.POSITIVE_INFINITY;
var maxX = 0;
var minY = Number.POSITIVE_INFINITY;
var maxY = 0;
var graphLabel = g.graph();
var marginX = graphLabel.marginx || 0;
var marginY = graphLabel.marginy || 0;
function getExtremes(attrs) {
var x = attrs.x;
var y = attrs.y;
var w = attrs.width;
var h = attrs.height;
minX = Math.min(minX, x - w / 2);
maxX = Math.max(maxX, x + w / 2);
minY = Math.min(minY, y - h / 2);
maxY = Math.max(maxY, y + h / 2);
}
_.forEach(g.nodes(), function (v) {
getExtremes(g.node(v));
});
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
if (_.has(edge, 'x')) {
getExtremes(edge);
}
});
minX -= marginX;
minY -= marginY;
_.forEach(g.nodes(), function (v) {
var node = g.node(v);
node.x -= minX;
node.y -= minY;
});
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
_.forEach(edge.points, function (p) {
p.x -= minX;
p.y -= minY;
});
if (_.has(edge, 'x')) {
edge.x -= minX;
}
if (_.has(edge, 'y')) {
edge.y -= minY;
}
});
graphLabel.width = maxX - minX + marginX;
graphLabel.height = maxY - minY + marginY;
}
function assignNodeIntersects(g) {
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
var nodeV = g.node(e.v);
var nodeW = g.node(e.w);
var p1, p2;
if (!edge.points) {
edge.points = [];
p1 = nodeW;
p2 = nodeV;
} else {
p1 = edge.points[0];
p2 = edge.points[edge.points.length - 1];
}
edge.points.unshift(util.intersectRect(nodeV, p1));
edge.points.push(util.intersectRect(nodeW, p2));
});
}
function fixupEdgeLabelCoords(g) {
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
if (_.has(edge, 'x')) {
if (edge.labelpos === 'l' || edge.labelpos === 'r') {
edge.width -= edge.labeloffset;
}
switch (edge.labelpos) {
case 'l':
edge.x -= edge.width / 2 + edge.labeloffset;
break;
case 'r':
edge.x += edge.width / 2 + edge.labeloffset;
break;
}
}
});
}
function reversePointsForReversedEdges(g) {
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
if (edge.reversed) {
edge.points.reverse();
}
});
}
function removeBorderNodes(g) {
_.forEach(g.nodes(), function (v) {
if (g.children(v).length) {
var node = g.node(v);
var t = g.node(node.borderTop);
var b = g.node(node.borderBottom);
var l = g.node(_.last(node.borderLeft));
var r = g.node(_.last(node.borderRight));
node.width = Math.abs(r.x - l.x);
node.height = Math.abs(b.y - t.y);
node.x = l.x + node.width / 2;
node.y = t.y + node.height / 2;
}
});
_.forEach(g.nodes(), function (v) {
if (g.node(v).dummy === 'border') {
g.removeNode(v);
}
});
}
function removeSelfEdges(g) {
_.forEach(g.edges(), function (e) {
if (e.v === e.w) {
var node = g.node(e.v);
if (!node.selfEdges) {
node.selfEdges = [];
}
node.selfEdges.push({ e: e, label: g.edge(e) });
g.removeEdge(e);
}
});
}
function insertSelfEdges(g) {
var layers = util.buildLayerMatrix(g);
_.forEach(layers, function (layer) {
var orderShift = 0;
_.forEach(layer, function (v, i) {
var node = g.node(v);
node.order = i + orderShift;
_.forEach(node.selfEdges, function (selfEdge) {
util.addDummyNode(
g,
'selfedge',
{
width: selfEdge.label.width,
height: selfEdge.label.height,
rank: node.rank,
order: i + ++orderShift,
e: selfEdge.e,
label: selfEdge.label,
},
'_se'
);
});
delete node.selfEdges;
});
});
}
function positionSelfEdges(g) {
_.forEach(g.nodes(), function (v) {
var node = g.node(v);
if (node.dummy === 'selfedge') {
var selfNode = g.node(node.e.v);
var x = selfNode.x + selfNode.width / 2;
var y = selfNode.y;
var dx = node.x - x;
var dy = selfNode.height / 2;
g.setEdge(node.e, node.label);
g.removeNode(v);
node.label.points = [
{ x: x + (2 * dx) / 3, y: y - dy },
{ x: x + (5 * dx) / 6, y: y - dy },
{ x: x + dx, y: y },
{ x: x + (5 * dx) / 6, y: y + dy },
{ x: x + (2 * dx) / 3, y: y + dy },
];
node.label.x = node.x;
node.label.y = node.y;
}
});
}
function selectNumberAttrs(obj, attrs) {
return _.mapValues(_.pick(obj, attrs), Number);
}
function canonicalize(attrs) {
var newAttrs = {};
_.forEach(attrs, function (v, k) {
newAttrs[k.toLowerCase()] = v;
});
return newAttrs;
}

View File

@@ -0,0 +1,2 @@
export function run(g: any): void;
export function cleanup(g: any): void;

137
node_modules/dagre-d3-es/src/dagre/nesting-graph.js generated vendored Normal file
View File

@@ -0,0 +1,137 @@
import * as _ from 'lodash-es';
import * as util from './util.js';
export { run, cleanup };
/*
* A nesting graph creates dummy nodes for the tops and bottoms of subgraphs,
* adds appropriate edges to ensure that all cluster nodes are placed between
* these boundries, and ensures that the graph is connected.
*
* In addition we ensure, through the use of the minlen property, that nodes
* and subgraph border nodes to not end up on the same rank.
*
* Preconditions:
*
* 1. Input graph is a DAG
* 2. Nodes in the input graph has a minlen attribute
*
* Postconditions:
*
* 1. Input graph is connected.
* 2. Dummy nodes are added for the tops and bottoms of subgraphs.
* 3. The minlen attribute for nodes is adjusted to ensure nodes do not
* get placed on the same rank as subgraph border nodes.
*
* The nesting graph idea comes from Sander, "Layout of Compound Directed
* Graphs."
*/
function run(g) {
var root = util.addDummyNode(g, 'root', {}, '_root');
var depths = treeDepths(g);
var height = _.max(_.values(depths)) - 1; // Note: depths is an Object not an array
var nodeSep = 2 * height + 1;
g.graph().nestingRoot = root;
// Multiply minlen by nodeSep to align nodes on non-border ranks.
_.forEach(g.edges(), function (e) {
g.edge(e).minlen *= nodeSep;
});
// Calculate a weight that is sufficient to keep subgraphs vertically compact
var weight = sumWeights(g) + 1;
// Create border nodes and link them up
_.forEach(g.children(), function (child) {
dfs(g, root, nodeSep, weight, height, depths, child);
});
// Save the multiplier for node layers for later removal of empty border
// layers.
g.graph().nodeRankFactor = nodeSep;
}
function dfs(g, root, nodeSep, weight, height, depths, v) {
var children = g.children(v);
if (!children.length) {
if (v !== root) {
g.setEdge(root, v, { weight: 0, minlen: nodeSep });
}
return;
}
var top = util.addBorderNode(g, '_bt');
var bottom = util.addBorderNode(g, '_bb');
var label = g.node(v);
g.setParent(top, v);
label.borderTop = top;
g.setParent(bottom, v);
label.borderBottom = bottom;
_.forEach(children, function (child) {
dfs(g, root, nodeSep, weight, height, depths, child);
var childNode = g.node(child);
var childTop = childNode.borderTop ? childNode.borderTop : child;
var childBottom = childNode.borderBottom ? childNode.borderBottom : child;
var thisWeight = childNode.borderTop ? weight : 2 * weight;
var minlen = childTop !== childBottom ? 1 : height - depths[v] + 1;
g.setEdge(top, childTop, {
weight: thisWeight,
minlen: minlen,
nestingEdge: true,
});
g.setEdge(childBottom, bottom, {
weight: thisWeight,
minlen: minlen,
nestingEdge: true,
});
});
if (!g.parent(v)) {
g.setEdge(root, top, { weight: 0, minlen: height + depths[v] });
}
}
function treeDepths(g) {
var depths = {};
function dfs(v, depth) {
var children = g.children(v);
if (children && children.length) {
_.forEach(children, function (child) {
dfs(child, depth + 1);
});
}
depths[v] = depth;
}
_.forEach(g.children(), function (v) {
dfs(v, 1);
});
return depths;
}
function sumWeights(g) {
return _.reduce(
g.edges(),
function (acc, e) {
return acc + g.edge(e).weight;
},
0
);
}
function cleanup(g) {
var graphLabel = g.graph();
g.removeNode(graphLabel.nestingRoot);
delete graphLabel.nestingRoot;
_.forEach(g.edges(), function (e) {
var edge = g.edge(e);
if (edge.nestingEdge) {
g.removeEdge(e);
}
});
}

2
node_modules/dagre-d3-es/src/dagre/normalize.d.ts generated vendored Normal file
View File

@@ -0,0 +1,2 @@
export function run(g: any): void;
export function undo(g: any): void;

89
node_modules/dagre-d3-es/src/dagre/normalize.js generated vendored Normal file
View File

@@ -0,0 +1,89 @@
import * as _ from 'lodash-es';
import * as util from './util.js';
export { run, undo };
/*
* Breaks any long edges in the graph into short segments that span 1 layer
* each. This operation is undoable with the denormalize function.
*
* Pre-conditions:
*
* 1. The input graph is a DAG.
* 2. Each node in the graph has a "rank" property.
*
* Post-condition:
*
* 1. All edges in the graph have a length of 1.
* 2. Dummy nodes are added where edges have been split into segments.
* 3. The graph is augmented with a "dummyChains" attribute which contains
* the first dummy in each chain of dummy nodes produced.
*/
function run(g) {
g.graph().dummyChains = [];
_.forEach(g.edges(), function (edge) {
normalizeEdge(g, edge);
});
}
function normalizeEdge(g, e) {
var v = e.v;
var vRank = g.node(v).rank;
var w = e.w;
var wRank = g.node(w).rank;
var name = e.name;
var edgeLabel = g.edge(e);
var labelRank = edgeLabel.labelRank;
if (wRank === vRank + 1) return;
g.removeEdge(e);
var dummy, attrs, i;
for (i = 0, ++vRank; vRank < wRank; ++i, ++vRank) {
edgeLabel.points = [];
attrs = {
width: 0,
height: 0,
edgeLabel: edgeLabel,
edgeObj: e,
rank: vRank,
};
dummy = util.addDummyNode(g, 'edge', attrs, '_d');
if (vRank === labelRank) {
attrs.width = edgeLabel.width;
attrs.height = edgeLabel.height;
attrs.dummy = 'edge-label';
attrs.labelpos = edgeLabel.labelpos;
}
g.setEdge(v, dummy, { weight: edgeLabel.weight }, name);
if (i === 0) {
g.graph().dummyChains.push(dummy);
}
v = dummy;
}
g.setEdge(v, w, { weight: edgeLabel.weight }, name);
}
function undo(g) {
_.forEach(g.graph().dummyChains, function (v) {
var node = g.node(v);
var origLabel = node.edgeLabel;
var w;
g.setEdge(node.edgeObj, origLabel);
while (node.dummy) {
w = g.successors(v)[0];
g.removeNode(v);
origLabel.points.push({ x: node.x, y: node.y });
if (node.dummy === 'edge-label') {
origLabel.x = node.x;
origLabel.y = node.y;
origLabel.width = node.width;
origLabel.height = node.height;
}
v = w;
node = g.node(v);
}
});
}

View File

@@ -0,0 +1 @@
export function addSubgraphConstraints(g: any, cg: any, vs: any): void;

View File

@@ -0,0 +1,53 @@
import * as _ from 'lodash-es';
export { addSubgraphConstraints };
function addSubgraphConstraints(g, cg, vs) {
var prev = {},
rootPrev;
_.forEach(vs, function (v) {
var child = g.parent(v),
parent,
prevChild;
while (child) {
parent = g.parent(child);
if (parent) {
prevChild = prev[parent];
prev[parent] = child;
} else {
prevChild = rootPrev;
rootPrev = child;
}
if (prevChild && prevChild !== child) {
cg.setEdge(prevChild, child);
return;
}
child = parent;
}
});
/*
function dfs(v) {
var children = v ? g.children(v) : g.children();
if (children.length) {
var min = Number.POSITIVE_INFINITY,
subgraphs = [];
_.each(children, function(child) {
var childMin = dfs(child);
if (g.children(child).length) {
subgraphs.push({ v: child, order: childMin });
}
min = Math.min(min, childMin);
});
_.reduce(_.sortBy(subgraphs, "order"), function(prev, curr) {
cg.setEdge(prev.v, curr.v);
return curr;
});
return min;
}
return g.node(v).order;
}
dfs(undefined);
*/
}

View File

@@ -0,0 +1 @@
export function barycenter(g: any, movable: any): any;

31
node_modules/dagre-d3-es/src/dagre/order/barycenter.js generated vendored Normal file
View File

@@ -0,0 +1,31 @@
import * as _ from 'lodash-es';
export { barycenter };
function barycenter(g, movable) {
return _.map(movable, function (v) {
var inV = g.inEdges(v);
if (!inV.length) {
return { v: v };
} else {
var result = _.reduce(
inV,
function (acc, e) {
var edge = g.edge(e),
nodeU = g.node(e.v);
return {
sum: acc.sum + edge.weight * nodeU.order,
weight: acc.weight + edge.weight,
};
},
{ sum: 0, weight: 0 }
);
return {
v: v,
barycenter: result.sum / result.weight,
weight: result.weight,
};
}
});
}

View File

@@ -0,0 +1,2 @@
export function buildLayerGraph(g: any, rank: any, relationship: any): Graph;
import { Graph } from '../../graphlib/index.js';

View File

@@ -0,0 +1,76 @@
import * as _ from 'lodash-es';
import { Graph } from '../../graphlib/index.js';
export { buildLayerGraph };
/*
* Constructs a graph that can be used to sort a layer of nodes. The graph will
* contain all base and subgraph nodes from the request layer in their original
* hierarchy and any edges that are incident on these nodes and are of the type
* requested by the "relationship" parameter.
*
* Nodes from the requested rank that do not have parents are assigned a root
* node in the output graph, which is set in the root graph attribute. This
* makes it easy to walk the hierarchy of movable nodes during ordering.
*
* Pre-conditions:
*
* 1. Input graph is a DAG
* 2. Base nodes in the input graph have a rank attribute
* 3. Subgraph nodes in the input graph has minRank and maxRank attributes
* 4. Edges have an assigned weight
*
* Post-conditions:
*
* 1. Output graph has all nodes in the movable rank with preserved
* hierarchy.
* 2. Root nodes in the movable layer are made children of the node
* indicated by the root attribute of the graph.
* 3. Non-movable nodes incident on movable nodes, selected by the
* relationship parameter, are included in the graph (without hierarchy).
* 4. Edges incident on movable nodes, selected by the relationship
* parameter, are added to the output graph.
* 5. The weights for copied edges are aggregated as need, since the output
* graph is not a multi-graph.
*/
function buildLayerGraph(g, rank, relationship) {
var root = createRootNode(g),
result = new Graph({ compound: true })
.setGraph({ root: root })
.setDefaultNodeLabel(function (v) {
return g.node(v);
});
_.forEach(g.nodes(), function (v) {
var node = g.node(v),
parent = g.parent(v);
if (node.rank === rank || (node.minRank <= rank && rank <= node.maxRank)) {
result.setNode(v);
result.setParent(v, parent || root);
// This assumes we have only short edges!
_.forEach(g[relationship](v), function (e) {
var u = e.v === v ? e.w : e.v,
edge = result.edge(u, v),
weight = !_.isUndefined(edge) ? edge.weight : 0;
result.setEdge(u, v, { weight: g.edge(e).weight + weight });
});
if (_.has(node, 'minRank')) {
result.setNode(v, {
borderLeft: node.borderLeft[rank],
borderRight: node.borderRight[rank],
});
}
}
});
return result;
}
function createRootNode(g) {
var v;
while (g.hasNode((v = _.uniqueId('_root'))));
return v;
}

View File

@@ -0,0 +1 @@
export function crossCount(g: any, layering: any): number;

View File

@@ -0,0 +1,79 @@
import * as _ from 'lodash-es';
export { crossCount };
/*
* A function that takes a layering (an array of layers, each with an array of
* ordererd nodes) and a graph and returns a weighted crossing count.
*
* Pre-conditions:
*
* 1. Input graph must be simple (not a multigraph), directed, and include
* only simple edges.
* 2. Edges in the input graph must have assigned weights.
*
* Post-conditions:
*
* 1. The graph and layering matrix are left unchanged.
*
* This algorithm is derived from Barth, et al., "Bilayer Cross Counting."
*/
function crossCount(g, layering) {
var cc = 0;
for (var i = 1; i < layering.length; ++i) {
cc += twoLayerCrossCount(g, layering[i - 1], layering[i]);
}
return cc;
}
function twoLayerCrossCount(g, northLayer, southLayer) {
// Sort all of the edges between the north and south layers by their position
// in the north layer and then the south. Map these edges to the position of
// their head in the south layer.
var southPos = _.zipObject(
southLayer,
_.map(southLayer, function (v, i) {
return i;
})
);
var southEntries = _.flatten(
_.map(northLayer, function (v) {
return _.sortBy(
_.map(g.outEdges(v), function (e) {
return { pos: southPos[e.w], weight: g.edge(e).weight };
}),
'pos'
);
}),
true
);
// Build the accumulator tree
var firstIndex = 1;
while (firstIndex < southLayer.length) firstIndex <<= 1;
var treeSize = 2 * firstIndex - 1;
firstIndex -= 1;
var tree = _.map(new Array(treeSize), function () {
return 0;
});
// Calculate the weighted crossings
var cc = 0;
_.forEach(
southEntries.forEach(function (entry) {
var index = entry.pos + firstIndex;
tree[index] += entry.weight;
var weightSum = 0;
while (index > 0) {
if (index % 2) {
weightSum += tree[index + 1];
}
index = (index - 1) >> 1;
tree[index] += entry.weight;
}
cc += entry.weight * weightSum;
})
);
return cc;
}

1
node_modules/dagre-d3-es/src/dagre/order/index.d.ts generated vendored Normal file
View File

@@ -0,0 +1 @@
export function order(g: any): void;

77
node_modules/dagre-d3-es/src/dagre/order/index.js generated vendored Normal file
View File

@@ -0,0 +1,77 @@
import * as _ from 'lodash-es';
import { Graph } from '../../graphlib/index.js';
import * as util from '../util.js';
import { addSubgraphConstraints } from './add-subgraph-constraints.js';
import { buildLayerGraph } from './build-layer-graph.js';
import { crossCount } from './cross-count.js';
import { initOrder } from './init-order.js';
import { sortSubgraph } from './sort-subgraph.js';
export { order };
/*
* Applies heuristics to minimize edge crossings in the graph and sets the best
* order solution as an order attribute on each node.
*
* Pre-conditions:
*
* 1. Graph must be DAG
* 2. Graph nodes must be objects with a "rank" attribute
* 3. Graph edges must have the "weight" attribute
*
* Post-conditions:
*
* 1. Graph nodes will have an "order" attribute based on the results of the
* algorithm.
*/
function order(g) {
var maxRank = util.maxRank(g),
downLayerGraphs = buildLayerGraphs(g, _.range(1, maxRank + 1), 'inEdges'),
upLayerGraphs = buildLayerGraphs(g, _.range(maxRank - 1, -1, -1), 'outEdges');
var layering = initOrder(g);
assignOrder(g, layering);
var bestCC = Number.POSITIVE_INFINITY,
best;
for (var i = 0, lastBest = 0; lastBest < 4; ++i, ++lastBest) {
sweepLayerGraphs(i % 2 ? downLayerGraphs : upLayerGraphs, i % 4 >= 2);
layering = util.buildLayerMatrix(g);
var cc = crossCount(g, layering);
if (cc < bestCC) {
lastBest = 0;
best = _.cloneDeep(layering);
bestCC = cc;
}
}
assignOrder(g, best);
}
function buildLayerGraphs(g, ranks, relationship) {
return _.map(ranks, function (rank) {
return buildLayerGraph(g, rank, relationship);
});
}
function sweepLayerGraphs(layerGraphs, biasRight) {
var cg = new Graph();
_.forEach(layerGraphs, function (lg) {
var root = lg.graph().root;
var sorted = sortSubgraph(lg, root, cg, biasRight);
_.forEach(sorted.vs, function (v, i) {
lg.node(v).order = i;
});
addSubgraphConstraints(lg, cg, sorted.vs);
});
}
function assignOrder(g, layering) {
_.forEach(layering, function (layer) {
_.forEach(layer, function (v, i) {
g.node(v).order = i;
});
});
}

View File

@@ -0,0 +1 @@
export function initOrder(g: any): any;

44
node_modules/dagre-d3-es/src/dagre/order/init-order.js generated vendored Normal file
View File

@@ -0,0 +1,44 @@
import * as _ from 'lodash-es';
export { initOrder };
/*
* Assigns an initial order value for each node by performing a DFS search
* starting from nodes in the first rank. Nodes are assigned an order in their
* rank as they are first visited.
*
* This approach comes from Gansner, et al., "A Technique for Drawing Directed
* Graphs."
*
* Returns a layering matrix with an array per layer and each layer sorted by
* the order of its nodes.
*/
function initOrder(g) {
var visited = {};
var simpleNodes = _.filter(g.nodes(), function (v) {
return !g.children(v).length;
});
var maxRank = _.max(
_.map(simpleNodes, function (v) {
return g.node(v).rank;
})
);
var layers = _.map(_.range(maxRank + 1), function () {
return [];
});
function dfs(v) {
if (_.has(visited, v)) return;
visited[v] = true;
var node = g.node(v);
layers[node.rank].push(v);
_.forEach(g.successors(v), dfs);
}
var orderedVs = _.sortBy(simpleNodes, function (v) {
return g.node(v).rank;
});
_.forEach(orderedVs, dfs);
return layers;
}

View File

@@ -0,0 +1 @@
export function resolveConflicts(entries: any, cg: any): any;

View File

@@ -0,0 +1,125 @@
import * as _ from 'lodash-es';
export { resolveConflicts };
/*
* Given a list of entries of the form {v, barycenter, weight} and a
* constraint graph this function will resolve any conflicts between the
* constraint graph and the barycenters for the entries. If the barycenters for
* an entry would violate a constraint in the constraint graph then we coalesce
* the nodes in the conflict into a new node that respects the contraint and
* aggregates barycenter and weight information.
*
* This implementation is based on the description in Forster, "A Fast and
* Simple Hueristic for Constrained Two-Level Crossing Reduction," thought it
* differs in some specific details.
*
* Pre-conditions:
*
* 1. Each entry has the form {v, barycenter, weight}, or if the node has
* no barycenter, then {v}.
*
* Returns:
*
* A new list of entries of the form {vs, i, barycenter, weight}. The list
* `vs` may either be a singleton or it may be an aggregation of nodes
* ordered such that they do not violate constraints from the constraint
* graph. The property `i` is the lowest original index of any of the
* elements in `vs`.
*/
function resolveConflicts(entries, cg) {
var mappedEntries = {};
_.forEach(entries, function (entry, i) {
var tmp = (mappedEntries[entry.v] = {
indegree: 0,
in: [],
out: [],
vs: [entry.v],
i: i,
});
if (!_.isUndefined(entry.barycenter)) {
tmp.barycenter = entry.barycenter;
tmp.weight = entry.weight;
}
});
_.forEach(cg.edges(), function (e) {
var entryV = mappedEntries[e.v];
var entryW = mappedEntries[e.w];
if (!_.isUndefined(entryV) && !_.isUndefined(entryW)) {
entryW.indegree++;
entryV.out.push(mappedEntries[e.w]);
}
});
var sourceSet = _.filter(mappedEntries, function (entry) {
return !entry.indegree;
});
return doResolveConflicts(sourceSet);
}
function doResolveConflicts(sourceSet) {
var entries = [];
function handleIn(vEntry) {
return function (uEntry) {
if (uEntry.merged) {
return;
}
if (
_.isUndefined(uEntry.barycenter) ||
_.isUndefined(vEntry.barycenter) ||
uEntry.barycenter >= vEntry.barycenter
) {
mergeEntries(vEntry, uEntry);
}
};
}
function handleOut(vEntry) {
return function (wEntry) {
wEntry['in'].push(vEntry);
if (--wEntry.indegree === 0) {
sourceSet.push(wEntry);
}
};
}
while (sourceSet.length) {
var entry = sourceSet.pop();
entries.push(entry);
_.forEach(entry['in'].reverse(), handleIn(entry));
_.forEach(entry.out, handleOut(entry));
}
return _.map(
_.filter(entries, function (entry) {
return !entry.merged;
}),
function (entry) {
return _.pick(entry, ['vs', 'i', 'barycenter', 'weight']);
}
);
}
function mergeEntries(target, source) {
var sum = 0;
var weight = 0;
if (target.weight) {
sum += target.barycenter * target.weight;
weight += target.weight;
}
if (source.weight) {
sum += source.barycenter * source.weight;
weight += source.weight;
}
target.vs = source.vs.concat(target.vs);
target.barycenter = sum / weight;
target.weight = weight;
target.i = Math.min(source.i, target.i);
source.merged = true;
}

View File

@@ -0,0 +1,8 @@
export function sortSubgraph(
g: any,
v: any,
cg: any,
biasRight: any
): {
vs: any;
};

View File

@@ -0,0 +1,79 @@
import * as _ from 'lodash-es';
import { barycenter } from './barycenter.js';
import { resolveConflicts } from './resolve-conflicts.js';
import { sort } from './sort.js';
export { sortSubgraph };
function sortSubgraph(g, v, cg, biasRight) {
var movable = g.children(v);
var node = g.node(v);
var bl = node ? node.borderLeft : undefined;
var br = node ? node.borderRight : undefined;
var subgraphs = {};
if (bl) {
movable = _.filter(movable, function (w) {
return w !== bl && w !== br;
});
}
var barycenters = barycenter(g, movable);
_.forEach(barycenters, function (entry) {
if (g.children(entry.v).length) {
var subgraphResult = sortSubgraph(g, entry.v, cg, biasRight);
subgraphs[entry.v] = subgraphResult;
if (_.has(subgraphResult, 'barycenter')) {
mergeBarycenters(entry, subgraphResult);
}
}
});
var entries = resolveConflicts(barycenters, cg);
expandSubgraphs(entries, subgraphs);
var result = sort(entries, biasRight);
if (bl) {
result.vs = _.flatten([bl, result.vs, br], true);
if (g.predecessors(bl).length) {
var blPred = g.node(g.predecessors(bl)[0]),
brPred = g.node(g.predecessors(br)[0]);
if (!_.has(result, 'barycenter')) {
result.barycenter = 0;
result.weight = 0;
}
result.barycenter =
(result.barycenter * result.weight + blPred.order + brPred.order) / (result.weight + 2);
result.weight += 2;
}
}
return result;
}
function expandSubgraphs(entries, subgraphs) {
_.forEach(entries, function (entry) {
entry.vs = _.flatten(
entry.vs.map(function (v) {
if (subgraphs[v]) {
return subgraphs[v].vs;
}
return v;
}),
true
);
});
}
function mergeBarycenters(target, other) {
if (!_.isUndefined(target.barycenter)) {
target.barycenter =
(target.barycenter * target.weight + other.barycenter * other.weight) /
(target.weight + other.weight);
target.weight += other.weight;
} else {
target.barycenter = other.barycenter;
target.weight = other.weight;
}
}

6
node_modules/dagre-d3-es/src/dagre/order/sort.d.ts generated vendored Normal file
View File

@@ -0,0 +1,6 @@
export function sort(
entries: any,
biasRight: any
): {
vs: any;
};

59
node_modules/dagre-d3-es/src/dagre/order/sort.js generated vendored Normal file
View File

@@ -0,0 +1,59 @@
import * as _ from 'lodash-es';
import * as util from '../util.js';
export { sort };
function sort(entries, biasRight) {
var parts = util.partition(entries, function (entry) {
return _.has(entry, 'barycenter');
});
var sortable = parts.lhs,
unsortable = _.sortBy(parts.rhs, function (entry) {
return -entry.i;
}),
vs = [],
sum = 0,
weight = 0,
vsIndex = 0;
sortable.sort(compareWithBias(!!biasRight));
vsIndex = consumeUnsortable(vs, unsortable, vsIndex);
_.forEach(sortable, function (entry) {
vsIndex += entry.vs.length;
vs.push(entry.vs);
sum += entry.barycenter * entry.weight;
weight += entry.weight;
vsIndex = consumeUnsortable(vs, unsortable, vsIndex);
});
var result = { vs: _.flatten(vs, true) };
if (weight) {
result.barycenter = sum / weight;
result.weight = weight;
}
return result;
}
function consumeUnsortable(vs, unsortable, index) {
var last;
while (unsortable.length && (last = _.last(unsortable)).i <= index) {
unsortable.pop();
vs.push(last.vs);
index++;
}
return index;
}
function compareWithBias(bias) {
return function (entryV, entryW) {
if (entryV.barycenter < entryW.barycenter) {
return -1;
} else if (entryV.barycenter > entryW.barycenter) {
return 1;
}
return !bias ? entryV.i - entryW.i : entryW.i - entryV.i;
};
}

View File

@@ -0,0 +1 @@
export function parentDummyChains(g: any): void;

View File

@@ -0,0 +1,86 @@
import * as _ from 'lodash-es';
export { parentDummyChains };
function parentDummyChains(g) {
var postorderNums = postorder(g);
_.forEach(g.graph().dummyChains, function (v) {
var node = g.node(v);
var edgeObj = node.edgeObj;
var pathData = findPath(g, postorderNums, edgeObj.v, edgeObj.w);
var path = pathData.path;
var lca = pathData.lca;
var pathIdx = 0;
var pathV = path[pathIdx];
var ascending = true;
while (v !== edgeObj.w) {
node = g.node(v);
if (ascending) {
while ((pathV = path[pathIdx]) !== lca && g.node(pathV).maxRank < node.rank) {
pathIdx++;
}
if (pathV === lca) {
ascending = false;
}
}
if (!ascending) {
while (
pathIdx < path.length - 1 &&
g.node((pathV = path[pathIdx + 1])).minRank <= node.rank
) {
pathIdx++;
}
pathV = path[pathIdx];
}
g.setParent(v, pathV);
v = g.successors(v)[0];
}
});
}
// Find a path from v to w through the lowest common ancestor (LCA). Return the
// full path and the LCA.
function findPath(g, postorderNums, v, w) {
var vPath = [];
var wPath = [];
var low = Math.min(postorderNums[v].low, postorderNums[w].low);
var lim = Math.max(postorderNums[v].lim, postorderNums[w].lim);
var parent;
var lca;
// Traverse up from v to find the LCA
parent = v;
do {
parent = g.parent(parent);
vPath.push(parent);
} while (parent && (postorderNums[parent].low > low || lim > postorderNums[parent].lim));
lca = parent;
// Traverse from w to LCA
parent = w;
while ((parent = g.parent(parent)) !== lca) {
wPath.push(parent);
}
return { path: vPath.concat(wPath.reverse()), lca: lca };
}
function postorder(g) {
var result = {};
var lim = 0;
function dfs(v) {
var low = lim;
_.forEach(g.children(v), dfs);
result[v] = { low: low, lim: lim++ };
}
_.forEach(g.children(), dfs);
return result;
}

24
node_modules/dagre-d3-es/src/dagre/position/bk.d.ts generated vendored Normal file
View File

@@ -0,0 +1,24 @@
export function positionX(g: any): any;
export function findType1Conflicts(g: any, layering: any): {};
export function findType2Conflicts(g: any, layering: any): {};
export function addConflict(conflicts: any, v: any, w: any): void;
export function hasConflict(conflicts: any, v: any, w: any): any;
export function verticalAlignment(
g: any,
layering: any,
conflicts: any,
neighborFn: any
): {
root: {};
align: {};
};
export function horizontalCompaction(
g: any,
layering: any,
root: any,
align: any,
reverseSep: any
): {};
export function alignCoordinates(xss: any, alignTo: any): void;
export function findSmallestWidthAlignment(g: any, xss: any): any;
export function balance(xss: any, align: any): any;

421
node_modules/dagre-d3-es/src/dagre/position/bk.js generated vendored Normal file
View File

@@ -0,0 +1,421 @@
import * as _ from 'lodash-es';
import { Graph } from '../../graphlib/index.js';
import * as util from '../util.js';
/*
* This module provides coordinate assignment based on Brandes and Köpf, "Fast
* and Simple Horizontal Coordinate Assignment."
*/
export {
positionX,
findType1Conflicts,
findType2Conflicts,
addConflict,
hasConflict,
verticalAlignment,
horizontalCompaction,
alignCoordinates,
findSmallestWidthAlignment,
balance,
};
/*
* Marks all edges in the graph with a type-1 conflict with the "type1Conflict"
* property. A type-1 conflict is one where a non-inner segment crosses an
* inner segment. An inner segment is an edge with both incident nodes marked
* with the "dummy" property.
*
* This algorithm scans layer by layer, starting with the second, for type-1
* conflicts between the current layer and the previous layer. For each layer
* it scans the nodes from left to right until it reaches one that is incident
* on an inner segment. It then scans predecessors to determine if they have
* edges that cross that inner segment. At the end a final scan is done for all
* nodes on the current rank to see if they cross the last visited inner
* segment.
*
* This algorithm (safely) assumes that a dummy node will only be incident on a
* single node in the layers being scanned.
*/
function findType1Conflicts(g, layering) {
var conflicts = {};
function visitLayer(prevLayer, layer) {
var // last visited node in the previous layer that is incident on an inner
// segment.
k0 = 0,
// Tracks the last node in this layer scanned for crossings with a type-1
// segment.
scanPos = 0,
prevLayerLength = prevLayer.length,
lastNode = _.last(layer);
_.forEach(layer, function (v, i) {
var w = findOtherInnerSegmentNode(g, v),
k1 = w ? g.node(w).order : prevLayerLength;
if (w || v === lastNode) {
_.forEach(layer.slice(scanPos, i + 1), function (scanNode) {
_.forEach(g.predecessors(scanNode), function (u) {
var uLabel = g.node(u),
uPos = uLabel.order;
if ((uPos < k0 || k1 < uPos) && !(uLabel.dummy && g.node(scanNode).dummy)) {
addConflict(conflicts, u, scanNode);
}
});
});
scanPos = i + 1;
k0 = k1;
}
});
return layer;
}
_.reduce(layering, visitLayer);
return conflicts;
}
function findType2Conflicts(g, layering) {
var conflicts = {};
function scan(south, southPos, southEnd, prevNorthBorder, nextNorthBorder) {
var v;
_.forEach(_.range(southPos, southEnd), function (i) {
v = south[i];
if (g.node(v).dummy) {
_.forEach(g.predecessors(v), function (u) {
var uNode = g.node(u);
if (uNode.dummy && (uNode.order < prevNorthBorder || uNode.order > nextNorthBorder)) {
addConflict(conflicts, u, v);
}
});
}
});
}
function visitLayer(north, south) {
var prevNorthPos = -1,
nextNorthPos,
southPos = 0;
_.forEach(south, function (v, southLookahead) {
if (g.node(v).dummy === 'border') {
var predecessors = g.predecessors(v);
if (predecessors.length) {
nextNorthPos = g.node(predecessors[0]).order;
scan(south, southPos, southLookahead, prevNorthPos, nextNorthPos);
southPos = southLookahead;
prevNorthPos = nextNorthPos;
}
}
scan(south, southPos, south.length, nextNorthPos, north.length);
});
return south;
}
_.reduce(layering, visitLayer);
return conflicts;
}
function findOtherInnerSegmentNode(g, v) {
if (g.node(v).dummy) {
return _.find(g.predecessors(v), function (u) {
return g.node(u).dummy;
});
}
}
function addConflict(conflicts, v, w) {
if (v > w) {
var tmp = v;
v = w;
w = tmp;
}
var conflictsV = conflicts[v];
if (!conflictsV) {
conflicts[v] = conflictsV = {};
}
conflictsV[w] = true;
}
function hasConflict(conflicts, v, w) {
if (v > w) {
var tmp = v;
v = w;
w = tmp;
}
return _.has(conflicts[v], w);
}
/*
* Try to align nodes into vertical "blocks" where possible. This algorithm
* attempts to align a node with one of its median neighbors. If the edge
* connecting a neighbor is a type-1 conflict then we ignore that possibility.
* If a previous node has already formed a block with a node after the node
* we're trying to form a block with, we also ignore that possibility - our
* blocks would be split in that scenario.
*/
function verticalAlignment(g, layering, conflicts, neighborFn) {
var root = {},
align = {},
pos = {};
// We cache the position here based on the layering because the graph and
// layering may be out of sync. The layering matrix is manipulated to
// generate different extreme alignments.
_.forEach(layering, function (layer) {
_.forEach(layer, function (v, order) {
root[v] = v;
align[v] = v;
pos[v] = order;
});
});
_.forEach(layering, function (layer) {
var prevIdx = -1;
_.forEach(layer, function (v) {
var ws = neighborFn(v);
if (ws.length) {
ws = _.sortBy(ws, function (w) {
return pos[w];
});
var mp = (ws.length - 1) / 2;
for (var i = Math.floor(mp), il = Math.ceil(mp); i <= il; ++i) {
var w = ws[i];
if (align[v] === v && prevIdx < pos[w] && !hasConflict(conflicts, v, w)) {
align[w] = v;
align[v] = root[v] = root[w];
prevIdx = pos[w];
}
}
}
});
});
return { root: root, align: align };
}
function horizontalCompaction(g, layering, root, align, reverseSep) {
// This portion of the algorithm differs from BK due to a number of problems.
// Instead of their algorithm we construct a new block graph and do two
// sweeps. The first sweep places blocks with the smallest possible
// coordinates. The second sweep removes unused space by moving blocks to the
// greatest coordinates without violating separation.
var xs = {},
blockG = buildBlockGraph(g, layering, root, reverseSep),
borderType = reverseSep ? 'borderLeft' : 'borderRight';
function iterate(setXsFunc, nextNodesFunc) {
var stack = blockG.nodes();
var elem = stack.pop();
var visited = {};
while (elem) {
if (visited[elem]) {
setXsFunc(elem);
} else {
visited[elem] = true;
stack.push(elem);
stack = stack.concat(nextNodesFunc(elem));
}
elem = stack.pop();
}
}
// First pass, assign smallest coordinates
function pass1(elem) {
xs[elem] = blockG.inEdges(elem).reduce(function (acc, e) {
return Math.max(acc, xs[e.v] + blockG.edge(e));
}, 0);
}
// Second pass, assign greatest coordinates
function pass2(elem) {
var min = blockG.outEdges(elem).reduce(function (acc, e) {
return Math.min(acc, xs[e.w] - blockG.edge(e));
}, Number.POSITIVE_INFINITY);
var node = g.node(elem);
if (min !== Number.POSITIVE_INFINITY && node.borderType !== borderType) {
xs[elem] = Math.max(xs[elem], min);
}
}
iterate(pass1, blockG.predecessors.bind(blockG));
iterate(pass2, blockG.successors.bind(blockG));
// Assign x coordinates to all nodes
_.forEach(align, function (v) {
xs[v] = xs[root[v]];
});
return xs;
}
function buildBlockGraph(g, layering, root, reverseSep) {
var blockGraph = new Graph(),
graphLabel = g.graph(),
sepFn = sep(graphLabel.nodesep, graphLabel.edgesep, reverseSep);
_.forEach(layering, function (layer) {
var u;
_.forEach(layer, function (v) {
var vRoot = root[v];
blockGraph.setNode(vRoot);
if (u) {
var uRoot = root[u],
prevMax = blockGraph.edge(uRoot, vRoot);
blockGraph.setEdge(uRoot, vRoot, Math.max(sepFn(g, v, u), prevMax || 0));
}
u = v;
});
});
return blockGraph;
}
/*
* Returns the alignment that has the smallest width of the given alignments.
*/
function findSmallestWidthAlignment(g, xss) {
return _.minBy(_.values(xss), function (xs) {
var max = Number.NEGATIVE_INFINITY;
var min = Number.POSITIVE_INFINITY;
_.forIn(xs, function (x, v) {
var halfWidth = width(g, v) / 2;
max = Math.max(x + halfWidth, max);
min = Math.min(x - halfWidth, min);
});
return max - min;
});
}
/*
* Align the coordinates of each of the layout alignments such that
* left-biased alignments have their minimum coordinate at the same point as
* the minimum coordinate of the smallest width alignment and right-biased
* alignments have their maximum coordinate at the same point as the maximum
* coordinate of the smallest width alignment.
*/
function alignCoordinates(xss, alignTo) {
var alignToVals = _.values(alignTo),
alignToMin = _.min(alignToVals),
alignToMax = _.max(alignToVals);
_.forEach(['u', 'd'], function (vert) {
_.forEach(['l', 'r'], function (horiz) {
var alignment = vert + horiz,
xs = xss[alignment],
delta;
if (xs === alignTo) return;
var xsVals = _.values(xs);
delta = horiz === 'l' ? alignToMin - _.min(xsVals) : alignToMax - _.max(xsVals);
if (delta) {
xss[alignment] = _.mapValues(xs, function (x) {
return x + delta;
});
}
});
});
}
function balance(xss, align) {
return _.mapValues(xss.ul, function (ignore, v) {
if (align) {
return xss[align.toLowerCase()][v];
} else {
var xs = _.sortBy(_.map(xss, v));
return (xs[1] + xs[2]) / 2;
}
});
}
function positionX(g) {
var layering = util.buildLayerMatrix(g);
var conflicts = _.merge(findType1Conflicts(g, layering), findType2Conflicts(g, layering));
var xss = {};
var adjustedLayering;
_.forEach(['u', 'd'], function (vert) {
adjustedLayering = vert === 'u' ? layering : _.values(layering).reverse();
_.forEach(['l', 'r'], function (horiz) {
if (horiz === 'r') {
adjustedLayering = _.map(adjustedLayering, function (inner) {
return _.values(inner).reverse();
});
}
var neighborFn = (vert === 'u' ? g.predecessors : g.successors).bind(g);
var align = verticalAlignment(g, adjustedLayering, conflicts, neighborFn);
var xs = horizontalCompaction(g, adjustedLayering, align.root, align.align, horiz === 'r');
if (horiz === 'r') {
xs = _.mapValues(xs, function (x) {
return -x;
});
}
xss[vert + horiz] = xs;
});
});
var smallestWidth = findSmallestWidthAlignment(g, xss);
alignCoordinates(xss, smallestWidth);
return balance(xss, g.graph().align);
}
function sep(nodeSep, edgeSep, reverseSep) {
return function (g, v, w) {
var vLabel = g.node(v);
var wLabel = g.node(w);
var sum = 0;
var delta;
sum += vLabel.width / 2;
if (_.has(vLabel, 'labelpos')) {
switch (vLabel.labelpos.toLowerCase()) {
case 'l':
delta = -vLabel.width / 2;
break;
case 'r':
delta = vLabel.width / 2;
break;
}
}
if (delta) {
sum += reverseSep ? delta : -delta;
}
delta = 0;
sum += (vLabel.dummy ? edgeSep : nodeSep) / 2;
sum += (wLabel.dummy ? edgeSep : nodeSep) / 2;
sum += wLabel.width / 2;
if (_.has(wLabel, 'labelpos')) {
switch (wLabel.labelpos.toLowerCase()) {
case 'l':
delta = wLabel.width / 2;
break;
case 'r':
delta = -wLabel.width / 2;
break;
}
}
if (delta) {
sum += reverseSep ? delta : -delta;
}
delta = 0;
return sum;
};
}
function width(g, v) {
return g.node(v).width;
}

View File

@@ -0,0 +1 @@
export function position(g: any): void;

31
node_modules/dagre-d3-es/src/dagre/position/index.js generated vendored Normal file
View File

@@ -0,0 +1,31 @@
import * as _ from 'lodash-es';
import * as util from '../util.js';
import { positionX } from './bk.js';
export { position };
function position(g) {
g = util.asNonCompoundGraph(g);
positionY(g);
_.forEach(positionX(g), function (x, v) {
g.node(v).x = x;
});
}
function positionY(g) {
var layering = util.buildLayerMatrix(g);
var rankSep = g.graph().ranksep;
var prevY = 0;
_.forEach(layering, function (layer) {
var maxHeight = _.max(
_.map(layer, function (v) {
return g.node(v).height;
})
);
_.forEach(layer, function (v) {
g.node(v).y = prevY + maxHeight / 2;
});
prevY += maxHeight + rankSep;
});
}

View File

@@ -0,0 +1,2 @@
export function feasibleTree(g: any): Graph;
import { Graph } from '../../graphlib/index.js';

View File

@@ -0,0 +1,87 @@
import * as _ from 'lodash-es';
import { Graph } from '../../graphlib/index.js';
import { slack } from './util.js';
export { feasibleTree };
/*
* Constructs a spanning tree with tight edges and adjusted the input node's
* ranks to achieve this. A tight edge is one that is has a length that matches
* its "minlen" attribute.
*
* The basic structure for this function is derived from Gansner, et al., "A
* Technique for Drawing Directed Graphs."
*
* Pre-conditions:
*
* 1. Graph must be a DAG.
* 2. Graph must be connected.
* 3. Graph must have at least one node.
* 5. Graph nodes must have been previously assigned a "rank" property that
* respects the "minlen" property of incident edges.
* 6. Graph edges must have a "minlen" property.
*
* Post-conditions:
*
* - Graph nodes will have their rank adjusted to ensure that all edges are
* tight.
*
* Returns a tree (undirected graph) that is constructed using only "tight"
* edges.
*/
function feasibleTree(g) {
var t = new Graph({ directed: false });
// Choose arbitrary node from which to start our tree
var start = g.nodes()[0];
var size = g.nodeCount();
t.setNode(start, {});
var edge, delta;
while (tightTree(t, g) < size) {
edge = findMinSlackEdge(t, g);
delta = t.hasNode(edge.v) ? slack(g, edge) : -slack(g, edge);
shiftRanks(t, g, delta);
}
return t;
}
/*
* Finds a maximal tree of tight edges and returns the number of nodes in the
* tree.
*/
function tightTree(t, g) {
function dfs(v) {
_.forEach(g.nodeEdges(v), function (e) {
var edgeV = e.v,
w = v === edgeV ? e.w : edgeV;
if (!t.hasNode(w) && !slack(g, e)) {
t.setNode(w, {});
t.setEdge(v, w, {});
dfs(w);
}
});
}
_.forEach(t.nodes(), dfs);
return t.nodeCount();
}
/*
* Finds the edge with the smallest slack that is incident on tree and returns
* it.
*/
function findMinSlackEdge(t, g) {
return _.minBy(g.edges(), function (e) {
if (t.hasNode(e.v) !== t.hasNode(e.w)) {
return slack(g, e);
}
});
}
function shiftRanks(t, g, delta) {
_.forEach(t.nodes(), function (v) {
g.node(v).rank += delta;
});
}

1
node_modules/dagre-d3-es/src/dagre/rank/index.d.ts generated vendored Normal file
View File

@@ -0,0 +1 @@
export function rank(g: any): void;

52
node_modules/dagre-d3-es/src/dagre/rank/index.js generated vendored Normal file
View File

@@ -0,0 +1,52 @@
import { feasibleTree } from './feasible-tree.js';
import { networkSimplex } from './network-simplex.js';
import { longestPath } from './util.js';
export { rank };
/*
* Assigns a rank to each node in the input graph that respects the "minlen"
* constraint specified on edges between nodes.
*
* This basic structure is derived from Gansner, et al., "A Technique for
* Drawing Directed Graphs."
*
* Pre-conditions:
*
* 1. Graph must be a connected DAG
* 2. Graph nodes must be objects
* 3. Graph edges must have "weight" and "minlen" attributes
*
* Post-conditions:
*
* 1. Graph nodes will have a "rank" attribute based on the results of the
* algorithm. Ranks can start at any index (including negative), we'll
* fix them up later.
*/
function rank(g) {
switch (g.graph().ranker) {
case 'network-simplex':
networkSimplexRanker(g);
break;
case 'tight-tree':
tightTreeRanker(g);
break;
case 'longest-path':
longestPathRanker(g);
break;
default:
networkSimplexRanker(g);
}
}
// A fast and simple ranker, but results are far from optimal.
var longestPathRanker = longestPath;
function tightTreeRanker(g) {
longestPath(g);
feasibleTree(g);
}
function networkSimplexRanker(g) {
networkSimplex(g);
}

View File

@@ -0,0 +1,16 @@
export function networkSimplex(g: any): void;
export namespace networkSimplex {
export { initLowLimValues };
export { initCutValues };
export { calcCutValue };
export { leaveEdge };
export { enterEdge };
export { exchangeEdges };
}
declare function initLowLimValues(tree: any, root: any, ...args: any[]): void;
declare function initCutValues(t: any, g: any): void;
declare function calcCutValue(t: any, g: any, child: any): number;
declare function leaveEdge(tree: any): any;
declare function enterEdge(t: any, g: any, edge: any): any;
declare function exchangeEdges(t: any, g: any, e: any, f: any): void;
export {};

View File

@@ -0,0 +1,236 @@
import * as _ from 'lodash-es';
import * as alg from '../../graphlib/alg/index.js';
import { simplify } from '../util.js';
import { feasibleTree } from './feasible-tree.js';
import { longestPath, slack } from './util.js';
export { networkSimplex };
// Expose some internals for testing purposes
networkSimplex.initLowLimValues = initLowLimValues;
networkSimplex.initCutValues = initCutValues;
networkSimplex.calcCutValue = calcCutValue;
networkSimplex.leaveEdge = leaveEdge;
networkSimplex.enterEdge = enterEdge;
networkSimplex.exchangeEdges = exchangeEdges;
/*
* The network simplex algorithm assigns ranks to each node in the input graph
* and iteratively improves the ranking to reduce the length of edges.
*
* Preconditions:
*
* 1. The input graph must be a DAG.
* 2. All nodes in the graph must have an object value.
* 3. All edges in the graph must have "minlen" and "weight" attributes.
*
* Postconditions:
*
* 1. All nodes in the graph will have an assigned "rank" attribute that has
* been optimized by the network simplex algorithm. Ranks start at 0.
*
*
* A rough sketch of the algorithm is as follows:
*
* 1. Assign initial ranks to each node. We use the longest path algorithm,
* which assigns ranks to the lowest position possible. In general this
* leads to very wide bottom ranks and unnecessarily long edges.
* 2. Construct a feasible tight tree. A tight tree is one such that all
* edges in the tree have no slack (difference between length of edge
* and minlen for the edge). This by itself greatly improves the assigned
* rankings by shorting edges.
* 3. Iteratively find edges that have negative cut values. Generally a
* negative cut value indicates that the edge could be removed and a new
* tree edge could be added to produce a more compact graph.
*
* Much of the algorithms here are derived from Gansner, et al., "A Technique
* for Drawing Directed Graphs." The structure of the file roughly follows the
* structure of the overall algorithm.
*/
function networkSimplex(g) {
g = simplify(g);
longestPath(g);
var t = feasibleTree(g);
initLowLimValues(t);
initCutValues(t, g);
var e, f;
while ((e = leaveEdge(t))) {
f = enterEdge(t, g, e);
exchangeEdges(t, g, e, f);
}
}
/*
* Initializes cut values for all edges in the tree.
*/
function initCutValues(t, g) {
var vs = alg.postorder(t, t.nodes());
vs = vs.slice(0, vs.length - 1);
_.forEach(vs, function (v) {
assignCutValue(t, g, v);
});
}
function assignCutValue(t, g, child) {
var childLab = t.node(child);
var parent = childLab.parent;
t.edge(child, parent).cutvalue = calcCutValue(t, g, child);
}
/*
* Given the tight tree, its graph, and a child in the graph calculate and
* return the cut value for the edge between the child and its parent.
*/
function calcCutValue(t, g, child) {
var childLab = t.node(child);
var parent = childLab.parent;
// True if the child is on the tail end of the edge in the directed graph
var childIsTail = true;
// The graph's view of the tree edge we're inspecting
var graphEdge = g.edge(child, parent);
// The accumulated cut value for the edge between this node and its parent
var cutValue = 0;
if (!graphEdge) {
childIsTail = false;
graphEdge = g.edge(parent, child);
}
cutValue = graphEdge.weight;
_.forEach(g.nodeEdges(child), function (e) {
var isOutEdge = e.v === child,
other = isOutEdge ? e.w : e.v;
if (other !== parent) {
var pointsToHead = isOutEdge === childIsTail,
otherWeight = g.edge(e).weight;
cutValue += pointsToHead ? otherWeight : -otherWeight;
if (isTreeEdge(t, child, other)) {
var otherCutValue = t.edge(child, other).cutvalue;
cutValue += pointsToHead ? -otherCutValue : otherCutValue;
}
}
});
return cutValue;
}
function initLowLimValues(tree, root) {
if (arguments.length < 2) {
root = tree.nodes()[0];
}
dfsAssignLowLim(tree, {}, 1, root);
}
function dfsAssignLowLim(tree, visited, nextLim, v, parent) {
var low = nextLim;
var label = tree.node(v);
visited[v] = true;
_.forEach(tree.neighbors(v), function (w) {
if (!_.has(visited, w)) {
nextLim = dfsAssignLowLim(tree, visited, nextLim, w, v);
}
});
label.low = low;
label.lim = nextLim++;
if (parent) {
label.parent = parent;
} else {
// TODO should be able to remove this when we incrementally update low lim
delete label.parent;
}
return nextLim;
}
function leaveEdge(tree) {
return _.find(tree.edges(), function (e) {
return tree.edge(e).cutvalue < 0;
});
}
function enterEdge(t, g, edge) {
var v = edge.v;
var w = edge.w;
// For the rest of this function we assume that v is the tail and w is the
// head, so if we don't have this edge in the graph we should flip it to
// match the correct orientation.
if (!g.hasEdge(v, w)) {
v = edge.w;
w = edge.v;
}
var vLabel = t.node(v);
var wLabel = t.node(w);
var tailLabel = vLabel;
var flip = false;
// If the root is in the tail of the edge then we need to flip the logic that
// checks for the head and tail nodes in the candidates function below.
if (vLabel.lim > wLabel.lim) {
tailLabel = wLabel;
flip = true;
}
var candidates = _.filter(g.edges(), function (edge) {
return (
flip === isDescendant(t, t.node(edge.v), tailLabel) &&
flip !== isDescendant(t, t.node(edge.w), tailLabel)
);
});
return _.minBy(candidates, function (edge) {
return slack(g, edge);
});
}
function exchangeEdges(t, g, e, f) {
var v = e.v;
var w = e.w;
t.removeEdge(v, w);
t.setEdge(f.v, f.w, {});
initLowLimValues(t);
initCutValues(t, g);
updateRanks(t, g);
}
function updateRanks(t, g) {
var root = _.find(t.nodes(), function (v) {
return !g.node(v).parent;
});
var vs = alg.preorder(t, root);
vs = vs.slice(1);
_.forEach(vs, function (v) {
var parent = t.node(v).parent,
edge = g.edge(v, parent),
flipped = false;
if (!edge) {
edge = g.edge(parent, v);
flipped = true;
}
g.node(v).rank = g.node(parent).rank + (flipped ? edge.minlen : -edge.minlen);
});
}
/*
* Returns true if the edge is in the tree.
*/
function isTreeEdge(tree, u, v) {
return tree.hasEdge(u, v);
}
/*
* Returns true if the specified node is descendant of the root node per the
* assigned low and lim attributes in the tree.
*/
function isDescendant(tree, vLabel, rootLabel) {
return rootLabel.low <= vLabel.lim && vLabel.lim <= rootLabel.lim;
}

2
node_modules/dagre-d3-es/src/dagre/rank/util.d.ts generated vendored Normal file
View File

@@ -0,0 +1,2 @@
export function longestPath(g: any): void;
export function slack(g: any, e: any): number;

63
node_modules/dagre-d3-es/src/dagre/rank/util.js generated vendored Normal file
View File

@@ -0,0 +1,63 @@
import * as _ from 'lodash-es';
export { longestPath, slack };
/*
* Initializes ranks for the input graph using the longest path algorithm. This
* algorithm scales well and is fast in practice, it yields rather poor
* solutions. Nodes are pushed to the lowest layer possible, leaving the bottom
* ranks wide and leaving edges longer than necessary. However, due to its
* speed, this algorithm is good for getting an initial ranking that can be fed
* into other algorithms.
*
* This algorithm does not normalize layers because it will be used by other
* algorithms in most cases. If using this algorithm directly, be sure to
* run normalize at the end.
*
* Pre-conditions:
*
* 1. Input graph is a DAG.
* 2. Input graph node labels can be assigned properties.
*
* Post-conditions:
*
* 1. Each node will be assign an (unnormalized) "rank" property.
*/
function longestPath(g) {
var visited = {};
function dfs(v) {
var label = g.node(v);
if (_.has(visited, v)) {
return label.rank;
}
visited[v] = true;
var rank = _.min(
_.map(g.outEdges(v), function (e) {
return dfs(e.w) - g.edge(e).minlen;
})
);
if (
rank === Number.POSITIVE_INFINITY || // return value of _.map([]) for Lodash 3
rank === undefined || // return value of _.map([]) for Lodash 4
rank === null
) {
// return value of _.map([null])
rank = 0;
}
return (label.rank = rank);
}
_.forEach(g.sources(), dfs);
}
/*
* Returns the amount of slack for the given edge. The slack is defined as the
* difference between the length of the edge and its minimum length.
*/
function slack(g, e) {
return g.node(e.w).rank - g.node(e.v).rank - g.edge(e).minlen;
}

27
node_modules/dagre-d3-es/src/dagre/util.d.ts generated vendored Normal file
View File

@@ -0,0 +1,27 @@
export function addDummyNode(g: any, type: any, attrs: any, name: any): any;
export function simplify(g: any): Graph;
export function asNonCompoundGraph(g: any): Graph;
export function successorWeights(g: any): any;
export function predecessorWeights(g: any): any;
export function intersectRect(
rect: any,
point: any
): {
x: any;
y: any;
};
export function buildLayerMatrix(g: any): any;
export function normalizeRanks(g: any): void;
export function removeEmptyRanks(g: any): void;
export function addBorderNode(g: any, prefix: any, rank: any, order: any, ...args: any[]): any;
export function maxRank(g: any): any;
export function partition(
collection: any,
fn: any
): {
lhs: any[];
rhs: any[];
};
export function time(name: any, fn: any): any;
export function notime(name: any, fn: any): any;
import { Graph } from '../graphlib/index.js';

250
node_modules/dagre-d3-es/src/dagre/util.js generated vendored Normal file
View File

@@ -0,0 +1,250 @@
import * as _ from 'lodash-es';
import { Graph } from '../graphlib/index.js';
export {
addDummyNode,
simplify,
asNonCompoundGraph,
successorWeights,
predecessorWeights,
intersectRect,
buildLayerMatrix,
normalizeRanks,
removeEmptyRanks,
addBorderNode,
maxRank,
partition,
time,
notime,
};
/*
* Adds a dummy node to the graph and return v.
*/
function addDummyNode(g, type, attrs, name) {
var v;
do {
v = _.uniqueId(name);
} while (g.hasNode(v));
attrs.dummy = type;
g.setNode(v, attrs);
return v;
}
/*
* Returns a new graph with only simple edges. Handles aggregation of data
* associated with multi-edges.
*/
function simplify(g) {
var simplified = new Graph().setGraph(g.graph());
_.forEach(g.nodes(), function (v) {
simplified.setNode(v, g.node(v));
});
_.forEach(g.edges(), function (e) {
var simpleLabel = simplified.edge(e.v, e.w) || { weight: 0, minlen: 1 };
var label = g.edge(e);
simplified.setEdge(e.v, e.w, {
weight: simpleLabel.weight + label.weight,
minlen: Math.max(simpleLabel.minlen, label.minlen),
});
});
return simplified;
}
function asNonCompoundGraph(g) {
var simplified = new Graph({ multigraph: g.isMultigraph() }).setGraph(g.graph());
_.forEach(g.nodes(), function (v) {
if (!g.children(v).length) {
simplified.setNode(v, g.node(v));
}
});
_.forEach(g.edges(), function (e) {
simplified.setEdge(e, g.edge(e));
});
return simplified;
}
function successorWeights(g) {
var weightMap = _.map(g.nodes(), function (v) {
var sucs = {};
_.forEach(g.outEdges(v), function (e) {
sucs[e.w] = (sucs[e.w] || 0) + g.edge(e).weight;
});
return sucs;
});
return _.zipObject(g.nodes(), weightMap);
}
function predecessorWeights(g) {
var weightMap = _.map(g.nodes(), function (v) {
var preds = {};
_.forEach(g.inEdges(v), function (e) {
preds[e.v] = (preds[e.v] || 0) + g.edge(e).weight;
});
return preds;
});
return _.zipObject(g.nodes(), weightMap);
}
/*
* Finds where a line starting at point ({x, y}) would intersect a rectangle
* ({x, y, width, height}) if it were pointing at the rectangle's center.
*/
function intersectRect(rect, point) {
var x = rect.x;
var y = rect.y;
// Rectangle intersection algorithm from:
// http://math.stackexchange.com/questions/108113/find-edge-between-two-boxes
var dx = point.x - x;
var dy = point.y - y;
var w = rect.width / 2;
var h = rect.height / 2;
if (!dx && !dy) {
throw new Error('Not possible to find intersection inside of the rectangle');
}
var sx, sy;
if (Math.abs(dy) * w > Math.abs(dx) * h) {
// Intersection is top or bottom of rect.
if (dy < 0) {
h = -h;
}
sx = (h * dx) / dy;
sy = h;
} else {
// Intersection is left or right of rect.
if (dx < 0) {
w = -w;
}
sx = w;
sy = (w * dy) / dx;
}
return { x: x + sx, y: y + sy };
}
/*
* Given a DAG with each node assigned "rank" and "order" properties, this
* function will produce a matrix with the ids of each node.
*/
function buildLayerMatrix(g) {
var layering = _.map(_.range(maxRank(g) + 1), function () {
return [];
});
_.forEach(g.nodes(), function (v) {
var node = g.node(v);
var rank = node.rank;
if (!_.isUndefined(rank)) {
layering[rank][node.order] = v;
}
});
return layering;
}
/*
* Adjusts the ranks for all nodes in the graph such that all nodes v have
* rank(v) >= 0 and at least one node w has rank(w) = 0.
*/
function normalizeRanks(g) {
var min = _.min(
_.map(g.nodes(), function (v) {
return g.node(v).rank;
})
);
_.forEach(g.nodes(), function (v) {
var node = g.node(v);
if (_.has(node, 'rank')) {
node.rank -= min;
}
});
}
function removeEmptyRanks(g) {
// Ranks may not start at 0, so we need to offset them
var offset = _.min(
_.map(g.nodes(), function (v) {
return g.node(v).rank;
})
);
var layers = [];
_.forEach(g.nodes(), function (v) {
var rank = g.node(v).rank - offset;
if (!layers[rank]) {
layers[rank] = [];
}
layers[rank].push(v);
});
var delta = 0;
var nodeRankFactor = g.graph().nodeRankFactor;
_.forEach(layers, function (vs, i) {
if (_.isUndefined(vs) && i % nodeRankFactor !== 0) {
--delta;
} else if (delta) {
_.forEach(vs, function (v) {
g.node(v).rank += delta;
});
}
});
}
function addBorderNode(g, prefix, rank, order) {
var node = {
width: 0,
height: 0,
};
if (arguments.length >= 4) {
node.rank = rank;
node.order = order;
}
return addDummyNode(g, 'border', node, prefix);
}
function maxRank(g) {
return _.max(
_.map(g.nodes(), function (v) {
var rank = g.node(v).rank;
if (!_.isUndefined(rank)) {
return rank;
}
})
);
}
/*
* Partition a collection into two groups: `lhs` and `rhs`. If the supplied
* function returns true for an entry it goes into `lhs`. Otherwise it goes
* into `rhs.
*/
function partition(collection, fn) {
var result = { lhs: [], rhs: [] };
_.forEach(collection, function (value) {
if (fn(value)) {
result.lhs.push(value);
} else {
result.rhs.push(value);
}
});
return result;
}
/*
* Returns a new function that wraps `fn` with a timer. The wrapper logs the
* time it takes to execute the function.
*/
function time(name, fn) {
var start = _.now();
try {
return fn();
} finally {
console.log(name + ' time: ' + (_.now() - start) + 'ms');
}
}
function notime(name, fn) {
return fn();
}

View File

@@ -0,0 +1 @@
export function components(g: any): any[];

View File

@@ -0,0 +1,27 @@
import * as _ from 'lodash-es';
export { components };
function components(g) {
var visited = {};
var cmpts = [];
var cmpt;
function dfs(v) {
if (_.has(visited, v)) return;
visited[v] = true;
cmpt.push(v);
_.each(g.successors(v), dfs);
_.each(g.predecessors(v), dfs);
}
_.each(g.nodes(), function (v) {
cmpt = [];
dfs(v);
if (cmpt.length) {
cmpts.push(cmpt);
}
});
return cmpts;
}

1
node_modules/dagre-d3-es/src/graphlib/alg/dfs.d.ts generated vendored Normal file
View File

@@ -0,0 +1 @@
export function dfs(g: any, vs: any, order: any): any[];

Some files were not shown because too many files have changed in this diff Show More