mirror of
https://github.com/nunocoracao/blowfish.git
synced 2026-01-30 16:31:52 +01:00
config redirect
This commit is contained in:
13
node_modules/d3-random/LICENSE
generated
vendored
Normal file
13
node_modules/d3-random/LICENSE
generated
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
Copyright 2010-2021 Mike Bostock
|
||||
|
||||
Permission to use, copy, modify, and/or distribute this software for any purpose
|
||||
with or without fee is hereby granted, provided that the above copyright notice
|
||||
and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
||||
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
||||
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
|
||||
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
||||
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
||||
THIS SOFTWARE.
|
||||
133
node_modules/d3-random/README.md
generated
vendored
Normal file
133
node_modules/d3-random/README.md
generated
vendored
Normal file
@@ -0,0 +1,133 @@
|
||||
# d3-random
|
||||
|
||||
Generate random numbers from various distributions.
|
||||
|
||||
See the [d3-random collection on Observable](https://observablehq.com/collection/@d3/d3-random) for examples.
|
||||
|
||||
## Installing
|
||||
|
||||
If you use npm, `npm install d3-random`. You can also download the [latest release on GitHub](https://github.com/d3/d3-random/releases/latest). For vanilla HTML in modern browsers, import d3-random from Skypack:
|
||||
|
||||
```html
|
||||
<script type="module">
|
||||
|
||||
import {randomUniform} from "https://cdn.skypack.dev/d3-random@3";
|
||||
|
||||
const random = randomUniform(1, 10);
|
||||
|
||||
</script>
|
||||
```
|
||||
|
||||
For legacy environments, you can load d3-random’s UMD bundle from an npm-based CDN such as jsDelivr; a `d3` global is exported:
|
||||
|
||||
```html
|
||||
<script src="https://cdn.jsdelivr.net/npm/d3-random@3"></script>
|
||||
<script>
|
||||
|
||||
const random = d3.randomUniform(1, 10);
|
||||
|
||||
</script>
|
||||
```
|
||||
|
||||
## API Reference
|
||||
|
||||
<a name="randomUniform" href="#randomUniform">#</a> d3.<b>randomUniform</b>([<i>min</i>, ][<i>max</i>]) · [Source](https://github.com/d3/d3-random/blob/master/src/uniform.js), [Examples](https://observablehq.com/@d3/d3-random#uniform)
|
||||
|
||||
Returns a function for generating random numbers with a [uniform distribution](https://en.wikipedia.org/wiki/Uniform_distribution_\(continuous\)). The minimum allowed value of a returned number is *min* (inclusive), and the maximum is *max* (exclusive). If *min* is not specified, it defaults to 0; if *max* is not specified, it defaults to 1. For example:
|
||||
|
||||
```js
|
||||
d3.randomUniform(6)(); // Returns a number greater than or equal to 0 and less than 6.
|
||||
d3.randomUniform(1, 5)(); // Returns a number greater than or equal to 1 and less than 5.
|
||||
```
|
||||
|
||||
<a name="randomInt" href="#randomInt">#</a> d3.<b>randomInt</b>([<i>min</i>, ][<i>max</i>]) · [Source](https://github.com/d3/d3-random/blob/master/src/int.js), [Examples](https://observablehq.com/@d3/d3-random#int)
|
||||
|
||||
Returns a function for generating random integers with a [uniform distribution](https://en.wikipedia.org/wiki/Uniform_distribution_\(continuous\)). The minimum allowed value of a returned number is ⌊*min*⌋ (inclusive), and the maximum is ⌊*max* - 1⌋ (inclusive). If *min* is not specified, it defaults to 0. For example:
|
||||
|
||||
```js
|
||||
d3.randomInt(6)(); // Returns an integer greater than or equal to 0 and less than 6.
|
||||
d3.randomInt(1, 5)(); // Returns an integer greater than or equal to 1 and less than 5.
|
||||
```
|
||||
|
||||
<a name="randomNormal" href="#randomNormal">#</a> d3.<b>randomNormal</b>([<i>mu</i>][, <i>sigma</i>]) · [Source](https://github.com/d3/d3-random/blob/master/src/normal.js), [Examples](https://observablehq.com/@d3/d3-random#normal)
|
||||
|
||||
Returns a function for generating random numbers with a [normal (Gaussian) distribution](https://en.wikipedia.org/wiki/Normal_distribution). The expected value of the generated numbers is *mu*, with the given standard deviation *sigma*. If *mu* is not specified, it defaults to 0; if *sigma* is not specified, it defaults to 1.
|
||||
|
||||
<a name="randomLogNormal" href="#randomLogNormal">#</a> d3.<b>randomLogNormal</b>([<i>mu</i>][, <i>sigma</i>]) · [Source](https://github.com/d3/d3-random/blob/master/src/logNormal.js), [Examples](https://observablehq.com/@d3/d3-random#logNormal)
|
||||
|
||||
Returns a function for generating random numbers with a [log-normal distribution](https://en.wikipedia.org/wiki/Log-normal_distribution). The expected value of the random variable’s natural logarithm is *mu*, with the given standard deviation *sigma*. If *mu* is not specified, it defaults to 0; if *sigma* is not specified, it defaults to 1.
|
||||
|
||||
<a name="randomBates" href="#randomBates">#</a> d3.<b>randomBates</b>(<i>n</i>) · [Source](https://github.com/d3/d3-random/blob/master/src/bates.js), [Examples](https://observablehq.com/@d3/d3-random#bates)
|
||||
|
||||
Returns a function for generating random numbers with a [Bates distribution](https://en.wikipedia.org/wiki/Bates_distribution) with *n* independent variables. The case of fractional *n* is handled as with d3.randomIrwinHall, and d3.randomBates(0) is equivalent to d3.randomUniform().
|
||||
|
||||
<a name="randomIrwinHall" href="#randomIrwinHall">#</a> d3.<b>randomIrwinHall</b>(<i>n</i>) · [Source](https://github.com/d3/d3-random/blob/master/src/irwinHall.js), [Examples](https://observablehq.com/@d3/d3-random#irwinHall)
|
||||
|
||||
Returns a function for generating random numbers with an [Irwin–Hall distribution](https://en.wikipedia.org/wiki/Irwin–Hall_distribution) with *n* independent variables. If the fractional part of *n* is non-zero, this is treated as adding d3.randomUniform() times that fractional part to the integral part.
|
||||
|
||||
<a name="randomExponential" href="#randomExponential">#</a> d3.<b>randomExponential</b>(<i>lambda</i>) · [Source](https://github.com/d3/d3-random/blob/master/src/exponential.js), [Examples](https://observablehq.com/@d3/d3-random#exponential)
|
||||
|
||||
Returns a function for generating random numbers with an [exponential distribution](https://en.wikipedia.org/wiki/Exponential_distribution) with the rate *lambda*; equivalent to time between events in a [Poisson process](https://en.wikipedia.org/wiki/Poisson_point_process) with a mean of 1 / *lambda*. For example, exponential(1/40) generates random times between events where, on average, one event occurs every 40 units of time.
|
||||
|
||||
<a name="randomPareto" href="#randomPareto">#</a> d3.<b>randomPareto</b>(<i>alpha</i>) · [Source](https://github.com/d3/d3-random/blob/master/src/pareto.js), [Examples](https://observablehq.com/@d3/d3-random#pareto)
|
||||
|
||||
Returns a function for generating random numbers with a [Pareto distribution](https://en.wikipedia.org/wiki/Pareto_distribution) with the shape *alpha*. The value *alpha* must be a positive value.
|
||||
|
||||
<a name="randomBernoulli" href="#randomBernoulli">#</a> d3.<b>randomBernoulli</b>(<i>p</i>) · [Source](https://github.com/d3/d3-random/blob/master/src/bernoulli.js), [Examples](https://observablehq.com/@d3/d3-random#bernoulli)
|
||||
|
||||
Returns a function for generating either 1 or 0 according to a [Bernoulli distribution](https://en.wikipedia.org/wiki/Binomial_distribution) with 1 being returned with success probability *p* and 0 with failure probability *q* = 1 - *p*. The value *p* is in the range [0, 1].
|
||||
|
||||
<a name="randomGeometric" href="#randomGeometric">#</a> d3.<b>randomGeometric</b>(<i>p</i>) · [Source](https://github.com/d3/d3-random/blob/master/src/geometric.js), [Examples](https://observablehq.com/@d3/d3-random#geometric)
|
||||
|
||||
Returns a function for generating numbers with a [geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution) with success probability *p*. The value *p* is in the range [0, 1].
|
||||
|
||||
<a name="randomBinomial" href="#randomBinomial">#</a> d3.<b>randomBinomial</b>(<i>n</i>, <i>p</i>) · [Source](https://github.com/d3/d3-random/blob/master/src/binomial.js), [Examples](https://observablehq.com/@d3/d3-random#binomial)
|
||||
|
||||
Returns a function for generating random numbers with a [binomial distribution](https://en.wikipedia.org/wiki/Binomial_distribution) with *n* the number of trials and *p* the probability of success in each trial. The value *n* is greater or equal to 0, and the value *p* is in the range [0, 1].
|
||||
|
||||
<a name="randomGamma" href="#randomGamma">#</a> d3.<b>randomGamma</b>(<i>k</i>, [<i>theta</i>]) · [Source](https://github.com/d3/d3-random/blob/master/src/gamma.js), [Examples](https://observablehq.com/@parcly-taxel/the-gamma-and-beta-distributions)
|
||||
|
||||
Returns a function for generating random numbers with a [gamma distribution](https://en.wikipedia.org/wiki/Gamma_distribution) with *k* the shape parameter and *theta* the scale parameter. The value *k* must be a positive value; if *theta* is not specified, it defaults to 1.
|
||||
|
||||
<a name="randomBeta" href="#randomBeta">#</a> d3.<b>randomBeta</b>(<i>alpha</i>, <i>beta</i>) · [Source](https://github.com/d3/d3-random/blob/master/src/beta.js), [Examples](https://observablehq.com/@parcly-taxel/the-gamma-and-beta-distributions)
|
||||
|
||||
Returns a function for generating random numbers with a [beta distribution](https://en.wikipedia.org/wiki/Beta_distribution) with *alpha* and *beta* shape parameters, which must both be positive.
|
||||
|
||||
<a name="randomWeibull" href="#randomWeibull">#</a> d3.<b>randomWeibull</b>(<i>k</i>, [<i>a</i>], [<i>b</i>]) · [Source](https://github.com/d3/d3-random/blob/master/src/weibull.js), [Examples](https://observablehq.com/@parcly-taxel/frechet-gumbel-weibull)
|
||||
|
||||
Returns a function for generating random numbers with one of the [generalized extreme value distributions](https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution), depending on *k*:
|
||||
|
||||
* If *k* is positive, the [Weibull distribution](https://en.wikipedia.org/wiki/Weibull_distribution) with shape parameter *k*
|
||||
* If *k* is zero, the [Gumbel distribution](https://en.wikipedia.org/wiki/Gumbel_distribution)
|
||||
* If *k* is negative, the [Fréchet distribution](https://en.wikipedia.org/wiki/Fréchet_distribution) with shape parameter −*k*
|
||||
|
||||
In all three cases, *a* is the location parameter and *b* is the scale parameter. If *a* is not specified, it defaults to 0; if *b* is not specified, it defaults to 1.
|
||||
|
||||
<a name="randomCauchy" href="#randomCauchy">#</a> d3.<b>randomCauchy</b>([<i>a</i>], [<i>b</i>]) · [Source](https://github.com/d3/d3-random/blob/master/src/cauchy.js), [Examples](https://observablehq.com/@parcly-taxel/cauchy-and-logistic-distributions)
|
||||
|
||||
Returns a function for generating random numbers with a [Cauchy distribution](https://en.wikipedia.org/wiki/Cauchy_distribution). *a* and *b* have the same meanings and default values as in d3.randomWeibull.
|
||||
|
||||
<a name="randomLogistic" href="#randomLogistic">#</a> d3.<b>randomLogistic</b>([<i>a</i>], [<i>b</i>]) · [Source](https://github.com/d3/d3-random/blob/master/src/logistic.js), [Examples](https://observablehq.com/@parcly-taxel/cauchy-and-logistic-distributions)
|
||||
|
||||
Returns a function for generating random numbers with a [logistic distribution](https://en.wikipedia.org/wiki/Logistic_distribution). *a* and *b* have the same meanings and default values as in d3.randomWeibull.
|
||||
|
||||
<a name="randomPoisson" href="#randomPoisson">#</a> d3.<b>randomPoisson</b>(<i>lambda</i>) · [Source](https://github.com/d3/d3-random/blob/master/src/poisson.js), [Examples](https://observablehq.com/@parcly-taxel/the-poisson-distribution)
|
||||
|
||||
Returns a function for generating random numbers with a [Poisson distribution](https://en.wikipedia.org/wiki/Poisson_distribution) with mean *lambda*.
|
||||
|
||||
<a name="random_source" href="#random_source">#</a> <i>random</i>.<b>source</b>(<i>source</i>) · [Examples](https://observablehq.com/@d3/random-source)
|
||||
|
||||
Returns the same type of function for generating random numbers but where the given random number generator *source* is used as the source of randomness instead of Math.random. The given random number generator must implement the same interface as Math.random and only return values in the range [0, 1). This is useful when a seeded random number generator is preferable to Math.random. For example:
|
||||
|
||||
```js
|
||||
import {randomLcg, randomNumber} from "d3-random";
|
||||
|
||||
const seed = 0.44871573888282423; // any number in [0, 1)
|
||||
const random = randomNormal.source(randomLcg(seed))(0, 1);
|
||||
|
||||
random(); // -0.6253955998897069
|
||||
```
|
||||
|
||||
<a name="randomLcg" href="#randomLcg">#</a> d3.<b>randomLcg</b>([<i>seed</i>]) · [Source](https://github.com/d3/d3-random/blob/master/src/lcg.js), [Examples](https://observablehq.com/@d3/d3-randomlcg)
|
||||
|
||||
Returns a [linear congruential generator](https://en.wikipedia.org/wiki/Linear_congruential_generator); this function can be called repeatedly to obtain pseudorandom values well-distributed on the interval [0,1) and with a long period (up to 1 billion numbers), similar to Math.random. A *seed* can be specified as a real number in the interval [0,1) or as any integer. In the latter case, only the lower 32 bits are considered. Two generators instanced with the same seed generate the same sequence, allowing to create reproducible pseudo-random experiments. If the *seed* is not specified, one is chosen using Math.random.
|
||||
358
node_modules/d3-random/dist/d3-random.js
generated
vendored
Normal file
358
node_modules/d3-random/dist/d3-random.js
generated
vendored
Normal file
@@ -0,0 +1,358 @@
|
||||
// https://d3js.org/d3-random/ v3.0.1 Copyright 2010-2021 Mike Bostock
|
||||
(function (global, factory) {
|
||||
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
||||
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
||||
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
|
||||
}(this, (function (exports) { 'use strict';
|
||||
|
||||
var defaultSource = Math.random;
|
||||
|
||||
var uniform = (function sourceRandomUniform(source) {
|
||||
function randomUniform(min, max) {
|
||||
min = min == null ? 0 : +min;
|
||||
max = max == null ? 1 : +max;
|
||||
if (arguments.length === 1) max = min, min = 0;
|
||||
else max -= min;
|
||||
return function() {
|
||||
return source() * max + min;
|
||||
};
|
||||
}
|
||||
|
||||
randomUniform.source = sourceRandomUniform;
|
||||
|
||||
return randomUniform;
|
||||
})(defaultSource);
|
||||
|
||||
var int = (function sourceRandomInt(source) {
|
||||
function randomInt(min, max) {
|
||||
if (arguments.length < 2) max = min, min = 0;
|
||||
min = Math.floor(min);
|
||||
max = Math.floor(max) - min;
|
||||
return function() {
|
||||
return Math.floor(source() * max + min);
|
||||
};
|
||||
}
|
||||
|
||||
randomInt.source = sourceRandomInt;
|
||||
|
||||
return randomInt;
|
||||
})(defaultSource);
|
||||
|
||||
var normal = (function sourceRandomNormal(source) {
|
||||
function randomNormal(mu, sigma) {
|
||||
var x, r;
|
||||
mu = mu == null ? 0 : +mu;
|
||||
sigma = sigma == null ? 1 : +sigma;
|
||||
return function() {
|
||||
var y;
|
||||
|
||||
// If available, use the second previously-generated uniform random.
|
||||
if (x != null) y = x, x = null;
|
||||
|
||||
// Otherwise, generate a new x and y.
|
||||
else do {
|
||||
x = source() * 2 - 1;
|
||||
y = source() * 2 - 1;
|
||||
r = x * x + y * y;
|
||||
} while (!r || r > 1);
|
||||
|
||||
return mu + sigma * y * Math.sqrt(-2 * Math.log(r) / r);
|
||||
};
|
||||
}
|
||||
|
||||
randomNormal.source = sourceRandomNormal;
|
||||
|
||||
return randomNormal;
|
||||
})(defaultSource);
|
||||
|
||||
var logNormal = (function sourceRandomLogNormal(source) {
|
||||
var N = normal.source(source);
|
||||
|
||||
function randomLogNormal() {
|
||||
var randomNormal = N.apply(this, arguments);
|
||||
return function() {
|
||||
return Math.exp(randomNormal());
|
||||
};
|
||||
}
|
||||
|
||||
randomLogNormal.source = sourceRandomLogNormal;
|
||||
|
||||
return randomLogNormal;
|
||||
})(defaultSource);
|
||||
|
||||
var irwinHall = (function sourceRandomIrwinHall(source) {
|
||||
function randomIrwinHall(n) {
|
||||
if ((n = +n) <= 0) return () => 0;
|
||||
return function() {
|
||||
for (var sum = 0, i = n; i > 1; --i) sum += source();
|
||||
return sum + i * source();
|
||||
};
|
||||
}
|
||||
|
||||
randomIrwinHall.source = sourceRandomIrwinHall;
|
||||
|
||||
return randomIrwinHall;
|
||||
})(defaultSource);
|
||||
|
||||
var bates = (function sourceRandomBates(source) {
|
||||
var I = irwinHall.source(source);
|
||||
|
||||
function randomBates(n) {
|
||||
// use limiting distribution at n === 0
|
||||
if ((n = +n) === 0) return source;
|
||||
var randomIrwinHall = I(n);
|
||||
return function() {
|
||||
return randomIrwinHall() / n;
|
||||
};
|
||||
}
|
||||
|
||||
randomBates.source = sourceRandomBates;
|
||||
|
||||
return randomBates;
|
||||
})(defaultSource);
|
||||
|
||||
var exponential = (function sourceRandomExponential(source) {
|
||||
function randomExponential(lambda) {
|
||||
return function() {
|
||||
return -Math.log1p(-source()) / lambda;
|
||||
};
|
||||
}
|
||||
|
||||
randomExponential.source = sourceRandomExponential;
|
||||
|
||||
return randomExponential;
|
||||
})(defaultSource);
|
||||
|
||||
var pareto = (function sourceRandomPareto(source) {
|
||||
function randomPareto(alpha) {
|
||||
if ((alpha = +alpha) < 0) throw new RangeError("invalid alpha");
|
||||
alpha = 1 / -alpha;
|
||||
return function() {
|
||||
return Math.pow(1 - source(), alpha);
|
||||
};
|
||||
}
|
||||
|
||||
randomPareto.source = sourceRandomPareto;
|
||||
|
||||
return randomPareto;
|
||||
})(defaultSource);
|
||||
|
||||
var bernoulli = (function sourceRandomBernoulli(source) {
|
||||
function randomBernoulli(p) {
|
||||
if ((p = +p) < 0 || p > 1) throw new RangeError("invalid p");
|
||||
return function() {
|
||||
return Math.floor(source() + p);
|
||||
};
|
||||
}
|
||||
|
||||
randomBernoulli.source = sourceRandomBernoulli;
|
||||
|
||||
return randomBernoulli;
|
||||
})(defaultSource);
|
||||
|
||||
var geometric = (function sourceRandomGeometric(source) {
|
||||
function randomGeometric(p) {
|
||||
if ((p = +p) < 0 || p > 1) throw new RangeError("invalid p");
|
||||
if (p === 0) return () => Infinity;
|
||||
if (p === 1) return () => 1;
|
||||
p = Math.log1p(-p);
|
||||
return function() {
|
||||
return 1 + Math.floor(Math.log1p(-source()) / p);
|
||||
};
|
||||
}
|
||||
|
||||
randomGeometric.source = sourceRandomGeometric;
|
||||
|
||||
return randomGeometric;
|
||||
})(defaultSource);
|
||||
|
||||
var gamma = (function sourceRandomGamma(source) {
|
||||
var randomNormal = normal.source(source)();
|
||||
|
||||
function randomGamma(k, theta) {
|
||||
if ((k = +k) < 0) throw new RangeError("invalid k");
|
||||
// degenerate distribution if k === 0
|
||||
if (k === 0) return () => 0;
|
||||
theta = theta == null ? 1 : +theta;
|
||||
// exponential distribution if k === 1
|
||||
if (k === 1) return () => -Math.log1p(-source()) * theta;
|
||||
|
||||
var d = (k < 1 ? k + 1 : k) - 1 / 3,
|
||||
c = 1 / (3 * Math.sqrt(d)),
|
||||
multiplier = k < 1 ? () => Math.pow(source(), 1 / k) : () => 1;
|
||||
return function() {
|
||||
do {
|
||||
do {
|
||||
var x = randomNormal(),
|
||||
v = 1 + c * x;
|
||||
} while (v <= 0);
|
||||
v *= v * v;
|
||||
var u = 1 - source();
|
||||
} while (u >= 1 - 0.0331 * x * x * x * x && Math.log(u) >= 0.5 * x * x + d * (1 - v + Math.log(v)));
|
||||
return d * v * multiplier() * theta;
|
||||
};
|
||||
}
|
||||
|
||||
randomGamma.source = sourceRandomGamma;
|
||||
|
||||
return randomGamma;
|
||||
})(defaultSource);
|
||||
|
||||
var beta = (function sourceRandomBeta(source) {
|
||||
var G = gamma.source(source);
|
||||
|
||||
function randomBeta(alpha, beta) {
|
||||
var X = G(alpha),
|
||||
Y = G(beta);
|
||||
return function() {
|
||||
var x = X();
|
||||
return x === 0 ? 0 : x / (x + Y());
|
||||
};
|
||||
}
|
||||
|
||||
randomBeta.source = sourceRandomBeta;
|
||||
|
||||
return randomBeta;
|
||||
})(defaultSource);
|
||||
|
||||
var binomial = (function sourceRandomBinomial(source) {
|
||||
var G = geometric.source(source),
|
||||
B = beta.source(source);
|
||||
|
||||
function randomBinomial(n, p) {
|
||||
n = +n;
|
||||
if ((p = +p) >= 1) return () => n;
|
||||
if (p <= 0) return () => 0;
|
||||
return function() {
|
||||
var acc = 0, nn = n, pp = p;
|
||||
while (nn * pp > 16 && nn * (1 - pp) > 16) {
|
||||
var i = Math.floor((nn + 1) * pp),
|
||||
y = B(i, nn - i + 1)();
|
||||
if (y <= pp) {
|
||||
acc += i;
|
||||
nn -= i;
|
||||
pp = (pp - y) / (1 - y);
|
||||
} else {
|
||||
nn = i - 1;
|
||||
pp /= y;
|
||||
}
|
||||
}
|
||||
var sign = pp < 0.5,
|
||||
pFinal = sign ? pp : 1 - pp,
|
||||
g = G(pFinal);
|
||||
for (var s = g(), k = 0; s <= nn; ++k) s += g();
|
||||
return acc + (sign ? k : nn - k);
|
||||
};
|
||||
}
|
||||
|
||||
randomBinomial.source = sourceRandomBinomial;
|
||||
|
||||
return randomBinomial;
|
||||
})(defaultSource);
|
||||
|
||||
var weibull = (function sourceRandomWeibull(source) {
|
||||
function randomWeibull(k, a, b) {
|
||||
var outerFunc;
|
||||
if ((k = +k) === 0) {
|
||||
outerFunc = x => -Math.log(x);
|
||||
} else {
|
||||
k = 1 / k;
|
||||
outerFunc = x => Math.pow(x, k);
|
||||
}
|
||||
a = a == null ? 0 : +a;
|
||||
b = b == null ? 1 : +b;
|
||||
return function() {
|
||||
return a + b * outerFunc(-Math.log1p(-source()));
|
||||
};
|
||||
}
|
||||
|
||||
randomWeibull.source = sourceRandomWeibull;
|
||||
|
||||
return randomWeibull;
|
||||
})(defaultSource);
|
||||
|
||||
var cauchy = (function sourceRandomCauchy(source) {
|
||||
function randomCauchy(a, b) {
|
||||
a = a == null ? 0 : +a;
|
||||
b = b == null ? 1 : +b;
|
||||
return function() {
|
||||
return a + b * Math.tan(Math.PI * source());
|
||||
};
|
||||
}
|
||||
|
||||
randomCauchy.source = sourceRandomCauchy;
|
||||
|
||||
return randomCauchy;
|
||||
})(defaultSource);
|
||||
|
||||
var logistic = (function sourceRandomLogistic(source) {
|
||||
function randomLogistic(a, b) {
|
||||
a = a == null ? 0 : +a;
|
||||
b = b == null ? 1 : +b;
|
||||
return function() {
|
||||
var u = source();
|
||||
return a + b * Math.log(u / (1 - u));
|
||||
};
|
||||
}
|
||||
|
||||
randomLogistic.source = sourceRandomLogistic;
|
||||
|
||||
return randomLogistic;
|
||||
})(defaultSource);
|
||||
|
||||
var poisson = (function sourceRandomPoisson(source) {
|
||||
var G = gamma.source(source),
|
||||
B = binomial.source(source);
|
||||
|
||||
function randomPoisson(lambda) {
|
||||
return function() {
|
||||
var acc = 0, l = lambda;
|
||||
while (l > 16) {
|
||||
var n = Math.floor(0.875 * l),
|
||||
t = G(n)();
|
||||
if (t > l) return acc + B(n - 1, l / t)();
|
||||
acc += n;
|
||||
l -= t;
|
||||
}
|
||||
for (var s = -Math.log1p(-source()), k = 0; s <= l; ++k) s -= Math.log1p(-source());
|
||||
return acc + k;
|
||||
};
|
||||
}
|
||||
|
||||
randomPoisson.source = sourceRandomPoisson;
|
||||
|
||||
return randomPoisson;
|
||||
})(defaultSource);
|
||||
|
||||
// https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
|
||||
const mul = 0x19660D;
|
||||
const inc = 0x3C6EF35F;
|
||||
const eps = 1 / 0x100000000;
|
||||
|
||||
function lcg(seed = Math.random()) {
|
||||
let state = (0 <= seed && seed < 1 ? seed / eps : Math.abs(seed)) | 0;
|
||||
return () => (state = mul * state + inc | 0, eps * (state >>> 0));
|
||||
}
|
||||
|
||||
exports.randomBates = bates;
|
||||
exports.randomBernoulli = bernoulli;
|
||||
exports.randomBeta = beta;
|
||||
exports.randomBinomial = binomial;
|
||||
exports.randomCauchy = cauchy;
|
||||
exports.randomExponential = exponential;
|
||||
exports.randomGamma = gamma;
|
||||
exports.randomGeometric = geometric;
|
||||
exports.randomInt = int;
|
||||
exports.randomIrwinHall = irwinHall;
|
||||
exports.randomLcg = lcg;
|
||||
exports.randomLogNormal = logNormal;
|
||||
exports.randomLogistic = logistic;
|
||||
exports.randomNormal = normal;
|
||||
exports.randomPareto = pareto;
|
||||
exports.randomPoisson = poisson;
|
||||
exports.randomUniform = uniform;
|
||||
exports.randomWeibull = weibull;
|
||||
|
||||
Object.defineProperty(exports, '__esModule', { value: true });
|
||||
|
||||
})));
|
||||
2
node_modules/d3-random/dist/d3-random.min.js
generated
vendored
Normal file
2
node_modules/d3-random/dist/d3-random.min.js
generated
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
// https://d3js.org/d3-random/ v3.0.1 Copyright 2010-2021 Mike Bostock
|
||||
!function(n,r){"object"==typeof exports&&"undefined"!=typeof module?r(exports):"function"==typeof define&&define.amd?define(["exports"],r):r((n="undefined"!=typeof globalThis?globalThis:n||self).d3=n.d3||{})}(this,(function(n){"use strict";var r=Math.random,t=function n(r){function t(n,t){return n=null==n?0:+n,t=null==t?1:+t,1===arguments.length?(t=n,n=0):t-=n,function(){return r()*t+n}}return t.source=n,t}(r),o=function n(r){function t(n,t){return arguments.length<2&&(t=n,n=0),n=Math.floor(n),t=Math.floor(t)-n,function(){return Math.floor(r()*t+n)}}return t.source=n,t}(r),u=function n(r){function t(n,t){var o,u;return n=null==n?0:+n,t=null==t?1:+t,function(){var e;if(null!=o)e=o,o=null;else do{o=2*r()-1,e=2*r()-1,u=o*o+e*e}while(!u||u>1);return n+t*e*Math.sqrt(-2*Math.log(u)/u)}}return t.source=n,t}(r),e=function n(r){var t=u.source(r);function o(){var n=t.apply(this,arguments);return function(){return Math.exp(n())}}return o.source=n,o}(r),a=function n(r){function t(n){return(n=+n)<=0?()=>0:function(){for(var t=0,o=n;o>1;--o)t+=r();return t+o*r()}}return t.source=n,t}(r),i=function n(r){var t=a.source(r);function o(n){if(0==(n=+n))return r;var o=t(n);return function(){return o()/n}}return o.source=n,o}(r),c=function n(r){function t(n){return function(){return-Math.log1p(-r())/n}}return t.source=n,t}(r),f=function n(r){function t(n){if((n=+n)<0)throw new RangeError("invalid alpha");return n=1/-n,function(){return Math.pow(1-r(),n)}}return t.source=n,t}(r),l=function n(r){function t(n){if((n=+n)<0||n>1)throw new RangeError("invalid p");return function(){return Math.floor(r()+n)}}return t.source=n,t}(r),h=function n(r){function t(n){if((n=+n)<0||n>1)throw new RangeError("invalid p");return 0===n?()=>1/0:1===n?()=>1:(n=Math.log1p(-n),function(){return 1+Math.floor(Math.log1p(-r())/n)})}return t.source=n,t}(r),s=function n(r){var t=u.source(r)();function o(n,o){if((n=+n)<0)throw new RangeError("invalid k");if(0===n)return()=>0;if(o=null==o?1:+o,1===n)return()=>-Math.log1p(-r())*o;var u=(n<1?n+1:n)-1/3,e=1/(3*Math.sqrt(u)),a=n<1?()=>Math.pow(r(),1/n):()=>1;return function(){do{do{var n=t(),i=1+e*n}while(i<=0);i*=i*i;var c=1-r()}while(c>=1-.0331*n*n*n*n&&Math.log(c)>=.5*n*n+u*(1-i+Math.log(i)));return u*i*a()*o}}return o.source=n,o}(r),d=function n(r){var t=s.source(r);function o(n,r){var o=t(n),u=t(r);return function(){var n=o();return 0===n?0:n/(n+u())}}return o.source=n,o}(r),M=function n(r){var t=h.source(r),o=d.source(r);function u(n,r){return n=+n,(r=+r)>=1?()=>n:r<=0?()=>0:function(){for(var u=0,e=n,a=r;e*a>16&&e*(1-a)>16;){var i=Math.floor((e+1)*a),c=o(i,e-i+1)();c<=a?(u+=i,e-=i,a=(a-c)/(1-c)):(e=i-1,a/=c)}for(var f=a<.5,l=t(f?a:1-a),h=l(),s=0;h<=e;++s)h+=l();return u+(f?s:e-s)}}return u.source=n,u}(r),v=function n(r){function t(n,t,o){var u;return 0==(n=+n)?u=n=>-Math.log(n):(n=1/n,u=r=>Math.pow(r,n)),t=null==t?0:+t,o=null==o?1:+o,function(){return t+o*u(-Math.log1p(-r()))}}return t.source=n,t}(r),m=function n(r){function t(n,t){return n=null==n?0:+n,t=null==t?1:+t,function(){return n+t*Math.tan(Math.PI*r())}}return t.source=n,t}(r),p=function n(r){function t(n,t){return n=null==n?0:+n,t=null==t?1:+t,function(){var o=r();return n+t*Math.log(o/(1-o))}}return t.source=n,t}(r),g=function n(r){var t=s.source(r),o=M.source(r);function u(n){return function(){for(var u=0,e=n;e>16;){var a=Math.floor(.875*e),i=t(a)();if(i>e)return u+o(a-1,e/i)();u+=a,e-=i}for(var c=-Math.log1p(-r()),f=0;c<=e;++f)c-=Math.log1p(-r());return u+f}}return u.source=n,u}(r);const w=1/4294967296;n.randomBates=i,n.randomBernoulli=l,n.randomBeta=d,n.randomBinomial=M,n.randomCauchy=m,n.randomExponential=c,n.randomGamma=s,n.randomGeometric=h,n.randomInt=o,n.randomIrwinHall=a,n.randomLcg=function(n=Math.random()){let r=0|(0<=n&&n<1?n/w:Math.abs(n));return()=>(r=1664525*r+1013904223|0,w*(r>>>0))},n.randomLogNormal=e,n.randomLogistic=p,n.randomNormal=u,n.randomPareto=f,n.randomPoisson=g,n.randomUniform=t,n.randomWeibull=v,Object.defineProperty(n,"__esModule",{value:!0})}));
|
||||
51
node_modules/d3-random/package.json
generated
vendored
Normal file
51
node_modules/d3-random/package.json
generated
vendored
Normal file
@@ -0,0 +1,51 @@
|
||||
{
|
||||
"name": "d3-random",
|
||||
"version": "3.0.1",
|
||||
"description": "Generate random numbers from various distributions.",
|
||||
"homepage": "https://d3js.org/d3-random/",
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "https://github.com/d3/d3-random.git"
|
||||
},
|
||||
"keywords": [
|
||||
"d3",
|
||||
"d3-module",
|
||||
"random",
|
||||
"rng"
|
||||
],
|
||||
"license": "ISC",
|
||||
"author": {
|
||||
"name": "Mike Bostock",
|
||||
"url": "http://bost.ocks.org/mike"
|
||||
},
|
||||
"type": "module",
|
||||
"files": [
|
||||
"dist/**/*.js",
|
||||
"src/**/*.js"
|
||||
],
|
||||
"module": "src/index.js",
|
||||
"main": "src/index.js",
|
||||
"jsdelivr": "dist/d3-random.min.js",
|
||||
"unpkg": "dist/d3-random.min.js",
|
||||
"exports": {
|
||||
"umd": "./dist/d3-random.min.js",
|
||||
"default": "./src/index.js"
|
||||
},
|
||||
"sideEffects": false,
|
||||
"devDependencies": {
|
||||
"d3-array": "1 - 2",
|
||||
"eslint": "7",
|
||||
"jsdom": "16",
|
||||
"mocha": "8",
|
||||
"rollup": "2",
|
||||
"rollup-plugin-terser": "7"
|
||||
},
|
||||
"scripts": {
|
||||
"test": "mocha 'test/**/*-test.js' && eslint src test",
|
||||
"prepublishOnly": "rm -rf dist && yarn test && rollup -c",
|
||||
"postpublish": "git push && git push --tags && cd ../d3.github.com && git pull && cp ../${npm_package_name}/dist/${npm_package_name}.js ${npm_package_name}.v${npm_package_version%%.*}.js && cp ../${npm_package_name}/dist/${npm_package_name}.min.js ${npm_package_name}.v${npm_package_version%%.*}.min.js && git add ${npm_package_name}.v${npm_package_version%%.*}.js ${npm_package_name}.v${npm_package_version%%.*}.min.js && git commit -m \"${npm_package_name} ${npm_package_version}\" && git push && cd -"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
}
|
||||
}
|
||||
19
node_modules/d3-random/src/bates.js
generated
vendored
Normal file
19
node_modules/d3-random/src/bates.js
generated
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
import irwinHall from "./irwinHall.js";
|
||||
|
||||
export default (function sourceRandomBates(source) {
|
||||
var I = irwinHall.source(source);
|
||||
|
||||
function randomBates(n) {
|
||||
// use limiting distribution at n === 0
|
||||
if ((n = +n) === 0) return source;
|
||||
var randomIrwinHall = I(n);
|
||||
return function() {
|
||||
return randomIrwinHall() / n;
|
||||
};
|
||||
}
|
||||
|
||||
randomBates.source = sourceRandomBates;
|
||||
|
||||
return randomBates;
|
||||
})(defaultSource);
|
||||
14
node_modules/d3-random/src/bernoulli.js
generated
vendored
Normal file
14
node_modules/d3-random/src/bernoulli.js
generated
vendored
Normal file
@@ -0,0 +1,14 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomBernoulli(source) {
|
||||
function randomBernoulli(p) {
|
||||
if ((p = +p) < 0 || p > 1) throw new RangeError("invalid p");
|
||||
return function() {
|
||||
return Math.floor(source() + p);
|
||||
};
|
||||
}
|
||||
|
||||
randomBernoulli.source = sourceRandomBernoulli;
|
||||
|
||||
return randomBernoulli;
|
||||
})(defaultSource);
|
||||
19
node_modules/d3-random/src/beta.js
generated
vendored
Normal file
19
node_modules/d3-random/src/beta.js
generated
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
import gamma from "./gamma.js";
|
||||
|
||||
export default (function sourceRandomBeta(source) {
|
||||
var G = gamma.source(source);
|
||||
|
||||
function randomBeta(alpha, beta) {
|
||||
var X = G(alpha),
|
||||
Y = G(beta);
|
||||
return function() {
|
||||
var x = X();
|
||||
return x === 0 ? 0 : x / (x + Y());
|
||||
};
|
||||
}
|
||||
|
||||
randomBeta.source = sourceRandomBeta;
|
||||
|
||||
return randomBeta;
|
||||
})(defaultSource);
|
||||
38
node_modules/d3-random/src/binomial.js
generated
vendored
Normal file
38
node_modules/d3-random/src/binomial.js
generated
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
import beta from "./beta.js";
|
||||
import geometric from "./geometric.js";
|
||||
|
||||
export default (function sourceRandomBinomial(source) {
|
||||
var G = geometric.source(source),
|
||||
B = beta.source(source);
|
||||
|
||||
function randomBinomial(n, p) {
|
||||
n = +n;
|
||||
if ((p = +p) >= 1) return () => n;
|
||||
if (p <= 0) return () => 0;
|
||||
return function() {
|
||||
var acc = 0, nn = n, pp = p;
|
||||
while (nn * pp > 16 && nn * (1 - pp) > 16) {
|
||||
var i = Math.floor((nn + 1) * pp),
|
||||
y = B(i, nn - i + 1)();
|
||||
if (y <= pp) {
|
||||
acc += i;
|
||||
nn -= i;
|
||||
pp = (pp - y) / (1 - y);
|
||||
} else {
|
||||
nn = i - 1;
|
||||
pp /= y;
|
||||
}
|
||||
}
|
||||
var sign = pp < 0.5,
|
||||
pFinal = sign ? pp : 1 - pp,
|
||||
g = G(pFinal);
|
||||
for (var s = g(), k = 0; s <= nn; ++k) s += g();
|
||||
return acc + (sign ? k : nn - k);
|
||||
};
|
||||
}
|
||||
|
||||
randomBinomial.source = sourceRandomBinomial;
|
||||
|
||||
return randomBinomial;
|
||||
})(defaultSource);
|
||||
15
node_modules/d3-random/src/cauchy.js
generated
vendored
Normal file
15
node_modules/d3-random/src/cauchy.js
generated
vendored
Normal file
@@ -0,0 +1,15 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomCauchy(source) {
|
||||
function randomCauchy(a, b) {
|
||||
a = a == null ? 0 : +a;
|
||||
b = b == null ? 1 : +b;
|
||||
return function() {
|
||||
return a + b * Math.tan(Math.PI * source());
|
||||
};
|
||||
}
|
||||
|
||||
randomCauchy.source = sourceRandomCauchy;
|
||||
|
||||
return randomCauchy;
|
||||
})(defaultSource);
|
||||
1
node_modules/d3-random/src/defaultSource.js
generated
vendored
Normal file
1
node_modules/d3-random/src/defaultSource.js
generated
vendored
Normal file
@@ -0,0 +1 @@
|
||||
export default Math.random;
|
||||
13
node_modules/d3-random/src/exponential.js
generated
vendored
Normal file
13
node_modules/d3-random/src/exponential.js
generated
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomExponential(source) {
|
||||
function randomExponential(lambda) {
|
||||
return function() {
|
||||
return -Math.log1p(-source()) / lambda;
|
||||
};
|
||||
}
|
||||
|
||||
randomExponential.source = sourceRandomExponential;
|
||||
|
||||
return randomExponential;
|
||||
})(defaultSource);
|
||||
34
node_modules/d3-random/src/gamma.js
generated
vendored
Normal file
34
node_modules/d3-random/src/gamma.js
generated
vendored
Normal file
@@ -0,0 +1,34 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
import normal from "./normal.js";
|
||||
|
||||
export default (function sourceRandomGamma(source) {
|
||||
var randomNormal = normal.source(source)();
|
||||
|
||||
function randomGamma(k, theta) {
|
||||
if ((k = +k) < 0) throw new RangeError("invalid k");
|
||||
// degenerate distribution if k === 0
|
||||
if (k === 0) return () => 0;
|
||||
theta = theta == null ? 1 : +theta;
|
||||
// exponential distribution if k === 1
|
||||
if (k === 1) return () => -Math.log1p(-source()) * theta;
|
||||
|
||||
var d = (k < 1 ? k + 1 : k) - 1 / 3,
|
||||
c = 1 / (3 * Math.sqrt(d)),
|
||||
multiplier = k < 1 ? () => Math.pow(source(), 1 / k) : () => 1;
|
||||
return function() {
|
||||
do {
|
||||
do {
|
||||
var x = randomNormal(),
|
||||
v = 1 + c * x;
|
||||
} while (v <= 0);
|
||||
v *= v * v;
|
||||
var u = 1 - source();
|
||||
} while (u >= 1 - 0.0331 * x * x * x * x && Math.log(u) >= 0.5 * x * x + d * (1 - v + Math.log(v)));
|
||||
return d * v * multiplier() * theta;
|
||||
};
|
||||
}
|
||||
|
||||
randomGamma.source = sourceRandomGamma;
|
||||
|
||||
return randomGamma;
|
||||
})(defaultSource);
|
||||
17
node_modules/d3-random/src/geometric.js
generated
vendored
Normal file
17
node_modules/d3-random/src/geometric.js
generated
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomGeometric(source) {
|
||||
function randomGeometric(p) {
|
||||
if ((p = +p) < 0 || p > 1) throw new RangeError("invalid p");
|
||||
if (p === 0) return () => Infinity;
|
||||
if (p === 1) return () => 1;
|
||||
p = Math.log1p(-p);
|
||||
return function() {
|
||||
return 1 + Math.floor(Math.log1p(-source()) / p);
|
||||
};
|
||||
}
|
||||
|
||||
randomGeometric.source = sourceRandomGeometric;
|
||||
|
||||
return randomGeometric;
|
||||
})(defaultSource);
|
||||
18
node_modules/d3-random/src/index.js
generated
vendored
Normal file
18
node_modules/d3-random/src/index.js
generated
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
export {default as randomUniform} from "./uniform.js";
|
||||
export {default as randomInt} from "./int.js";
|
||||
export {default as randomNormal} from "./normal.js";
|
||||
export {default as randomLogNormal} from "./logNormal.js";
|
||||
export {default as randomBates} from "./bates.js";
|
||||
export {default as randomIrwinHall} from "./irwinHall.js";
|
||||
export {default as randomExponential} from "./exponential.js";
|
||||
export {default as randomPareto} from "./pareto.js";
|
||||
export {default as randomBernoulli} from "./bernoulli.js";
|
||||
export {default as randomGeometric} from "./geometric.js";
|
||||
export {default as randomBinomial} from "./binomial.js";
|
||||
export {default as randomGamma} from "./gamma.js";
|
||||
export {default as randomBeta} from "./beta.js";
|
||||
export {default as randomWeibull} from "./weibull.js";
|
||||
export {default as randomCauchy} from "./cauchy.js";
|
||||
export {default as randomLogistic} from "./logistic.js";
|
||||
export {default as randomPoisson} from "./poisson.js";
|
||||
export {default as randomLcg} from "./lcg.js";
|
||||
16
node_modules/d3-random/src/int.js
generated
vendored
Normal file
16
node_modules/d3-random/src/int.js
generated
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomInt(source) {
|
||||
function randomInt(min, max) {
|
||||
if (arguments.length < 2) max = min, min = 0;
|
||||
min = Math.floor(min);
|
||||
max = Math.floor(max) - min;
|
||||
return function() {
|
||||
return Math.floor(source() * max + min);
|
||||
};
|
||||
}
|
||||
|
||||
randomInt.source = sourceRandomInt;
|
||||
|
||||
return randomInt;
|
||||
})(defaultSource);
|
||||
15
node_modules/d3-random/src/irwinHall.js
generated
vendored
Normal file
15
node_modules/d3-random/src/irwinHall.js
generated
vendored
Normal file
@@ -0,0 +1,15 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomIrwinHall(source) {
|
||||
function randomIrwinHall(n) {
|
||||
if ((n = +n) <= 0) return () => 0;
|
||||
return function() {
|
||||
for (var sum = 0, i = n; i > 1; --i) sum += source();
|
||||
return sum + i * source();
|
||||
};
|
||||
}
|
||||
|
||||
randomIrwinHall.source = sourceRandomIrwinHall;
|
||||
|
||||
return randomIrwinHall;
|
||||
})(defaultSource);
|
||||
9
node_modules/d3-random/src/lcg.js
generated
vendored
Normal file
9
node_modules/d3-random/src/lcg.js
generated
vendored
Normal file
@@ -0,0 +1,9 @@
|
||||
// https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
|
||||
const mul = 0x19660D;
|
||||
const inc = 0x3C6EF35F;
|
||||
const eps = 1 / 0x100000000;
|
||||
|
||||
export default function lcg(seed = Math.random()) {
|
||||
let state = (0 <= seed && seed < 1 ? seed / eps : Math.abs(seed)) | 0;
|
||||
return () => (state = mul * state + inc | 0, eps * (state >>> 0));
|
||||
}
|
||||
17
node_modules/d3-random/src/logNormal.js
generated
vendored
Normal file
17
node_modules/d3-random/src/logNormal.js
generated
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
import normal from "./normal.js";
|
||||
|
||||
export default (function sourceRandomLogNormal(source) {
|
||||
var N = normal.source(source);
|
||||
|
||||
function randomLogNormal() {
|
||||
var randomNormal = N.apply(this, arguments);
|
||||
return function() {
|
||||
return Math.exp(randomNormal());
|
||||
};
|
||||
}
|
||||
|
||||
randomLogNormal.source = sourceRandomLogNormal;
|
||||
|
||||
return randomLogNormal;
|
||||
})(defaultSource);
|
||||
16
node_modules/d3-random/src/logistic.js
generated
vendored
Normal file
16
node_modules/d3-random/src/logistic.js
generated
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomLogistic(source) {
|
||||
function randomLogistic(a, b) {
|
||||
a = a == null ? 0 : +a;
|
||||
b = b == null ? 1 : +b;
|
||||
return function() {
|
||||
var u = source();
|
||||
return a + b * Math.log(u / (1 - u));
|
||||
};
|
||||
}
|
||||
|
||||
randomLogistic.source = sourceRandomLogistic;
|
||||
|
||||
return randomLogistic;
|
||||
})(defaultSource);
|
||||
28
node_modules/d3-random/src/normal.js
generated
vendored
Normal file
28
node_modules/d3-random/src/normal.js
generated
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomNormal(source) {
|
||||
function randomNormal(mu, sigma) {
|
||||
var x, r;
|
||||
mu = mu == null ? 0 : +mu;
|
||||
sigma = sigma == null ? 1 : +sigma;
|
||||
return function() {
|
||||
var y;
|
||||
|
||||
// If available, use the second previously-generated uniform random.
|
||||
if (x != null) y = x, x = null;
|
||||
|
||||
// Otherwise, generate a new x and y.
|
||||
else do {
|
||||
x = source() * 2 - 1;
|
||||
y = source() * 2 - 1;
|
||||
r = x * x + y * y;
|
||||
} while (!r || r > 1);
|
||||
|
||||
return mu + sigma * y * Math.sqrt(-2 * Math.log(r) / r);
|
||||
};
|
||||
}
|
||||
|
||||
randomNormal.source = sourceRandomNormal;
|
||||
|
||||
return randomNormal;
|
||||
})(defaultSource);
|
||||
15
node_modules/d3-random/src/pareto.js
generated
vendored
Normal file
15
node_modules/d3-random/src/pareto.js
generated
vendored
Normal file
@@ -0,0 +1,15 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomPareto(source) {
|
||||
function randomPareto(alpha) {
|
||||
if ((alpha = +alpha) < 0) throw new RangeError("invalid alpha");
|
||||
alpha = 1 / -alpha;
|
||||
return function() {
|
||||
return Math.pow(1 - source(), alpha);
|
||||
};
|
||||
}
|
||||
|
||||
randomPareto.source = sourceRandomPareto;
|
||||
|
||||
return randomPareto;
|
||||
})(defaultSource);
|
||||
27
node_modules/d3-random/src/poisson.js
generated
vendored
Normal file
27
node_modules/d3-random/src/poisson.js
generated
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
import binomial from "./binomial.js";
|
||||
import gamma from "./gamma.js";
|
||||
|
||||
export default (function sourceRandomPoisson(source) {
|
||||
var G = gamma.source(source),
|
||||
B = binomial.source(source);
|
||||
|
||||
function randomPoisson(lambda) {
|
||||
return function() {
|
||||
var acc = 0, l = lambda;
|
||||
while (l > 16) {
|
||||
var n = Math.floor(0.875 * l),
|
||||
t = G(n)();
|
||||
if (t > l) return acc + B(n - 1, l / t)();
|
||||
acc += n;
|
||||
l -= t;
|
||||
}
|
||||
for (var s = -Math.log1p(-source()), k = 0; s <= l; ++k) s -= Math.log1p(-source());
|
||||
return acc + k;
|
||||
};
|
||||
}
|
||||
|
||||
randomPoisson.source = sourceRandomPoisson;
|
||||
|
||||
return randomPoisson;
|
||||
})(defaultSource);
|
||||
17
node_modules/d3-random/src/uniform.js
generated
vendored
Normal file
17
node_modules/d3-random/src/uniform.js
generated
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomUniform(source) {
|
||||
function randomUniform(min, max) {
|
||||
min = min == null ? 0 : +min;
|
||||
max = max == null ? 1 : +max;
|
||||
if (arguments.length === 1) max = min, min = 0;
|
||||
else max -= min;
|
||||
return function() {
|
||||
return source() * max + min;
|
||||
};
|
||||
}
|
||||
|
||||
randomUniform.source = sourceRandomUniform;
|
||||
|
||||
return randomUniform;
|
||||
})(defaultSource);
|
||||
22
node_modules/d3-random/src/weibull.js
generated
vendored
Normal file
22
node_modules/d3-random/src/weibull.js
generated
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
import defaultSource from "./defaultSource.js";
|
||||
|
||||
export default (function sourceRandomWeibull(source) {
|
||||
function randomWeibull(k, a, b) {
|
||||
var outerFunc;
|
||||
if ((k = +k) === 0) {
|
||||
outerFunc = x => -Math.log(x);
|
||||
} else {
|
||||
k = 1 / k;
|
||||
outerFunc = x => Math.pow(x, k);
|
||||
}
|
||||
a = a == null ? 0 : +a;
|
||||
b = b == null ? 1 : +b;
|
||||
return function() {
|
||||
return a + b * outerFunc(-Math.log1p(-source()));
|
||||
};
|
||||
}
|
||||
|
||||
randomWeibull.source = sourceRandomWeibull;
|
||||
|
||||
return randomWeibull;
|
||||
})(defaultSource);
|
||||
Reference in New Issue
Block a user